Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering

Genetically engineered T cell therapy is emerging as a potent strategy for treating hematological and solid malignancies. Although lentivirus is the most common vector for T cell gene modification, its transduction efficacy remains unsatisfied especially during the manufacturing process. Herein, gly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2019-05, Vol.29 (22), p.n/a
Hauptverfasser: Pan, Hong, Li, Ping, Li, Guifei, Li, Wenjun, Hu, Bian, He, Huamei, Chen, Ze, Wang, Fangfang, Liu, Lanlan, Gong, Yifeng, Han, Yutong, Luo, Yingmei, Zheng, Mingbin, Ma, Yifan, Cai, Lintao, Jin, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 22
container_start_page
container_title Advanced functional materials
container_volume 29
creator Pan, Hong
Li, Ping
Li, Guifei
Li, Wenjun
Hu, Bian
He, Huamei
Chen, Ze
Wang, Fangfang
Liu, Lanlan
Gong, Yifeng
Han, Yutong
Luo, Yingmei
Zheng, Mingbin
Ma, Yifan
Cai, Lintao
Jin, Yan
description Genetically engineered T cell therapy is emerging as a potent strategy for treating hematological and solid malignancies. Although lentivirus is the most common vector for T cell gene modification, its transduction efficacy remains unsatisfied especially during the manufacturing process. Herein, glycometabolic bioorthogonal chemistry is utilized to establish a highly efficient viral transduction system for human primary T lymphocytes. Azide motifs are anchored on the T cell surface via the intrinsic glycometabolism of exogenous azide–glucose, serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyl (DBCO)‐conjugated PEI1.8K (PEI‐DBCO) is then coated on lentiviral surface, which strengthens the virus–T cell interaction through DBCO/azide bioorthogonal chemistry. The results show that the PEI‐DBCO/azide–glucose system effectively facilitates viral binding to T cells and elevates the transduction efficiency of the lentivirus from 20% to 80% without any effect on T cell proliferation and activity. More importantly, the PEI‐DBCO/azide–glucose system significantly doubles the yield of anti‐CD19 chimeric antigen receptor T (CAR‐T) cells and robustly boosts their antitumor capability compared to polybrene‐assisted lentiviral transduction both in vitro and in vivo. Overall, the bioorthogonal PEI‐DBCO/azide–glucose system significantly boosts viral transduction efficacy and exhibits a powerful gene‐manipulating capability in human primary T cells, thereby showing a great potential for clinical‐engineered T lymphocytes manufacture. A bioorthogonal PEI‐dibenzocyclooctyl (DBCO)/azide–glucose viral transduction system is developed for chimeric antigen receptor T (CAR‐T) cell manufacture and immunotherapy. High‐efficiency gene transduction into T cells is achieved through bioorthogonal conjugation between modified lentivirus vectors and “click” T cells. The CAR‐T cells generated by this strategy effectively eradicate the B cell tumor in vivo, holding great potential for clinical‐engineered T cell manufacture.
doi_str_mv 10.1002/adfm.201807528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230502770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230502770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3548-61658b483c42955d34a69256e59f3ffa015b9414fc84b72276ed6b33cb1bc3e93</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhgdRsFa3rgOup-Y6l2WtvQgVQaq4C0kmaVNmJjWZQWbnI_iMPolTKnXp6hw4_3c454uiawRHCEJ8KwpTjTBEGUwZzk6iAUpQEhOIs9Njj97Oo4sQthCiNCV0EJl52SlX6UZIV1oF7qxzvtm4tatFCSYbXdnQ-O7782ve2kIX4NX6frDyog5FqxrramCcB89OtqEBi7YSNViBiS5LMK3Xttba23p9GZ0ZUQZ99VuH0ctsupos4uXT_GEyXsaKMJrF_ZEskzQjiuKcsYJQkeSYJZrlhhgjIGIyp4galVGZYpwmukgkIUoiqYjOyTC6Oezdeffe6tDwrWt9_0rgGBPIIE5T2KdGh5TyLgSvDd95WwnfcQT53iXfu-RHlz2QH4APW-runzQf388e_9gfrhV5wA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230502770</pqid></control><display><type>article</type><title>Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering</title><source>Wiley Journals</source><creator>Pan, Hong ; Li, Ping ; Li, Guifei ; Li, Wenjun ; Hu, Bian ; He, Huamei ; Chen, Ze ; Wang, Fangfang ; Liu, Lanlan ; Gong, Yifeng ; Han, Yutong ; Luo, Yingmei ; Zheng, Mingbin ; Ma, Yifan ; Cai, Lintao ; Jin, Yan</creator><creatorcontrib>Pan, Hong ; Li, Ping ; Li, Guifei ; Li, Wenjun ; Hu, Bian ; He, Huamei ; Chen, Ze ; Wang, Fangfang ; Liu, Lanlan ; Gong, Yifeng ; Han, Yutong ; Luo, Yingmei ; Zheng, Mingbin ; Ma, Yifan ; Cai, Lintao ; Jin, Yan</creatorcontrib><description>Genetically engineered T cell therapy is emerging as a potent strategy for treating hematological and solid malignancies. Although lentivirus is the most common vector for T cell gene modification, its transduction efficacy remains unsatisfied especially during the manufacturing process. Herein, glycometabolic bioorthogonal chemistry is utilized to establish a highly efficient viral transduction system for human primary T lymphocytes. Azide motifs are anchored on the T cell surface via the intrinsic glycometabolism of exogenous azide–glucose, serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyl (DBCO)‐conjugated PEI1.8K (PEI‐DBCO) is then coated on lentiviral surface, which strengthens the virus–T cell interaction through DBCO/azide bioorthogonal chemistry. The results show that the PEI‐DBCO/azide–glucose system effectively facilitates viral binding to T cells and elevates the transduction efficiency of the lentivirus from 20% to 80% without any effect on T cell proliferation and activity. More importantly, the PEI‐DBCO/azide–glucose system significantly doubles the yield of anti‐CD19 chimeric antigen receptor T (CAR‐T) cells and robustly boosts their antitumor capability compared to polybrene‐assisted lentiviral transduction both in vitro and in vivo. Overall, the bioorthogonal PEI‐DBCO/azide–glucose system significantly boosts viral transduction efficacy and exhibits a powerful gene‐manipulating capability in human primary T cells, thereby showing a great potential for clinical‐engineered T lymphocytes manufacture. A bioorthogonal PEI‐dibenzocyclooctyl (DBCO)/azide–glucose viral transduction system is developed for chimeric antigen receptor T (CAR‐T) cell manufacture and immunotherapy. High‐efficiency gene transduction into T cells is achieved through bioorthogonal conjugation between modified lentivirus vectors and “click” T cells. The CAR‐T cells generated by this strategy effectively eradicate the B cell tumor in vivo, holding great potential for clinical‐engineered T cell manufacture.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201807528</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Antigens ; azide–glucose ; Binding ; Genetic engineering ; Genetic modification ; Glucose ; glycometabolic bioorthogonal chemistry ; Lymphocytes ; Materials science ; Organic chemistry ; T cell engineering ; viral transduction ; Viruses</subject><ispartof>Advanced functional materials, 2019-05, Vol.29 (22), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3548-61658b483c42955d34a69256e59f3ffa015b9414fc84b72276ed6b33cb1bc3e93</citedby><cites>FETCH-LOGICAL-c3548-61658b483c42955d34a69256e59f3ffa015b9414fc84b72276ed6b33cb1bc3e93</cites><orcidid>0000-0002-2461-6390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.201807528$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.201807528$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Pan, Hong</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>He, Huamei</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Wang, Fangfang</creatorcontrib><creatorcontrib>Liu, Lanlan</creatorcontrib><creatorcontrib>Gong, Yifeng</creatorcontrib><creatorcontrib>Han, Yutong</creatorcontrib><creatorcontrib>Luo, Yingmei</creatorcontrib><creatorcontrib>Zheng, Mingbin</creatorcontrib><creatorcontrib>Ma, Yifan</creatorcontrib><creatorcontrib>Cai, Lintao</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><title>Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering</title><title>Advanced functional materials</title><description>Genetically engineered T cell therapy is emerging as a potent strategy for treating hematological and solid malignancies. Although lentivirus is the most common vector for T cell gene modification, its transduction efficacy remains unsatisfied especially during the manufacturing process. Herein, glycometabolic bioorthogonal chemistry is utilized to establish a highly efficient viral transduction system for human primary T lymphocytes. Azide motifs are anchored on the T cell surface via the intrinsic glycometabolism of exogenous azide–glucose, serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyl (DBCO)‐conjugated PEI1.8K (PEI‐DBCO) is then coated on lentiviral surface, which strengthens the virus–T cell interaction through DBCO/azide bioorthogonal chemistry. The results show that the PEI‐DBCO/azide–glucose system effectively facilitates viral binding to T cells and elevates the transduction efficiency of the lentivirus from 20% to 80% without any effect on T cell proliferation and activity. More importantly, the PEI‐DBCO/azide–glucose system significantly doubles the yield of anti‐CD19 chimeric antigen receptor T (CAR‐T) cells and robustly boosts their antitumor capability compared to polybrene‐assisted lentiviral transduction both in vitro and in vivo. Overall, the bioorthogonal PEI‐DBCO/azide–glucose system significantly boosts viral transduction efficacy and exhibits a powerful gene‐manipulating capability in human primary T cells, thereby showing a great potential for clinical‐engineered T lymphocytes manufacture. A bioorthogonal PEI‐dibenzocyclooctyl (DBCO)/azide–glucose viral transduction system is developed for chimeric antigen receptor T (CAR‐T) cell manufacture and immunotherapy. High‐efficiency gene transduction into T cells is achieved through bioorthogonal conjugation between modified lentivirus vectors and “click” T cells. The CAR‐T cells generated by this strategy effectively eradicate the B cell tumor in vivo, holding great potential for clinical‐engineered T cell manufacture.</description><subject>Antigens</subject><subject>azide–glucose</subject><subject>Binding</subject><subject>Genetic engineering</subject><subject>Genetic modification</subject><subject>Glucose</subject><subject>glycometabolic bioorthogonal chemistry</subject><subject>Lymphocytes</subject><subject>Materials science</subject><subject>Organic chemistry</subject><subject>T cell engineering</subject><subject>viral transduction</subject><subject>Viruses</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhgdRsFa3rgOup-Y6l2WtvQgVQaq4C0kmaVNmJjWZQWbnI_iMPolTKnXp6hw4_3c454uiawRHCEJ8KwpTjTBEGUwZzk6iAUpQEhOIs9Njj97Oo4sQthCiNCV0EJl52SlX6UZIV1oF7qxzvtm4tatFCSYbXdnQ-O7782ve2kIX4NX6frDyog5FqxrramCcB89OtqEBi7YSNViBiS5LMK3Xttba23p9GZ0ZUQZ99VuH0ctsupos4uXT_GEyXsaKMJrF_ZEskzQjiuKcsYJQkeSYJZrlhhgjIGIyp4galVGZYpwmukgkIUoiqYjOyTC6Oezdeffe6tDwrWt9_0rgGBPIIE5T2KdGh5TyLgSvDd95WwnfcQT53iXfu-RHlz2QH4APW-runzQf388e_9gfrhV5wA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Pan, Hong</creator><creator>Li, Ping</creator><creator>Li, Guifei</creator><creator>Li, Wenjun</creator><creator>Hu, Bian</creator><creator>He, Huamei</creator><creator>Chen, Ze</creator><creator>Wang, Fangfang</creator><creator>Liu, Lanlan</creator><creator>Gong, Yifeng</creator><creator>Han, Yutong</creator><creator>Luo, Yingmei</creator><creator>Zheng, Mingbin</creator><creator>Ma, Yifan</creator><creator>Cai, Lintao</creator><creator>Jin, Yan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2461-6390</orcidid></search><sort><creationdate>20190501</creationdate><title>Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering</title><author>Pan, Hong ; Li, Ping ; Li, Guifei ; Li, Wenjun ; Hu, Bian ; He, Huamei ; Chen, Ze ; Wang, Fangfang ; Liu, Lanlan ; Gong, Yifeng ; Han, Yutong ; Luo, Yingmei ; Zheng, Mingbin ; Ma, Yifan ; Cai, Lintao ; Jin, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3548-61658b483c42955d34a69256e59f3ffa015b9414fc84b72276ed6b33cb1bc3e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antigens</topic><topic>azide–glucose</topic><topic>Binding</topic><topic>Genetic engineering</topic><topic>Genetic modification</topic><topic>Glucose</topic><topic>glycometabolic bioorthogonal chemistry</topic><topic>Lymphocytes</topic><topic>Materials science</topic><topic>Organic chemistry</topic><topic>T cell engineering</topic><topic>viral transduction</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Hong</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><creatorcontrib>Li, Guifei</creatorcontrib><creatorcontrib>Li, Wenjun</creatorcontrib><creatorcontrib>Hu, Bian</creatorcontrib><creatorcontrib>He, Huamei</creatorcontrib><creatorcontrib>Chen, Ze</creatorcontrib><creatorcontrib>Wang, Fangfang</creatorcontrib><creatorcontrib>Liu, Lanlan</creatorcontrib><creatorcontrib>Gong, Yifeng</creatorcontrib><creatorcontrib>Han, Yutong</creatorcontrib><creatorcontrib>Luo, Yingmei</creatorcontrib><creatorcontrib>Zheng, Mingbin</creatorcontrib><creatorcontrib>Ma, Yifan</creatorcontrib><creatorcontrib>Cai, Lintao</creatorcontrib><creatorcontrib>Jin, Yan</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Hong</au><au>Li, Ping</au><au>Li, Guifei</au><au>Li, Wenjun</au><au>Hu, Bian</au><au>He, Huamei</au><au>Chen, Ze</au><au>Wang, Fangfang</au><au>Liu, Lanlan</au><au>Gong, Yifeng</au><au>Han, Yutong</au><au>Luo, Yingmei</au><au>Zheng, Mingbin</au><au>Ma, Yifan</au><au>Cai, Lintao</au><au>Jin, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering</atitle><jtitle>Advanced functional materials</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>29</volume><issue>22</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Genetically engineered T cell therapy is emerging as a potent strategy for treating hematological and solid malignancies. Although lentivirus is the most common vector for T cell gene modification, its transduction efficacy remains unsatisfied especially during the manufacturing process. Herein, glycometabolic bioorthogonal chemistry is utilized to establish a highly efficient viral transduction system for human primary T lymphocytes. Azide motifs are anchored on the T cell surface via the intrinsic glycometabolism of exogenous azide–glucose, serving as an artificial ligand for viral binding. The complementary functional moiety dibenzocyclooctyl (DBCO)‐conjugated PEI1.8K (PEI‐DBCO) is then coated on lentiviral surface, which strengthens the virus–T cell interaction through DBCO/azide bioorthogonal chemistry. The results show that the PEI‐DBCO/azide–glucose system effectively facilitates viral binding to T cells and elevates the transduction efficiency of the lentivirus from 20% to 80% without any effect on T cell proliferation and activity. More importantly, the PEI‐DBCO/azide–glucose system significantly doubles the yield of anti‐CD19 chimeric antigen receptor T (CAR‐T) cells and robustly boosts their antitumor capability compared to polybrene‐assisted lentiviral transduction both in vitro and in vivo. Overall, the bioorthogonal PEI‐DBCO/azide–glucose system significantly boosts viral transduction efficacy and exhibits a powerful gene‐manipulating capability in human primary T cells, thereby showing a great potential for clinical‐engineered T lymphocytes manufacture. A bioorthogonal PEI‐dibenzocyclooctyl (DBCO)/azide–glucose viral transduction system is developed for chimeric antigen receptor T (CAR‐T) cell manufacture and immunotherapy. High‐efficiency gene transduction into T cells is achieved through bioorthogonal conjugation between modified lentivirus vectors and “click” T cells. The CAR‐T cells generated by this strategy effectively eradicate the B cell tumor in vivo, holding great potential for clinical‐engineered T cell manufacture.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201807528</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2461-6390</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2019-05, Vol.29 (22), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2230502770
source Wiley Journals
subjects Antigens
azide–glucose
Binding
Genetic engineering
Genetic modification
Glucose
glycometabolic bioorthogonal chemistry
Lymphocytes
Materials science
Organic chemistry
T cell engineering
viral transduction
Viruses
title Glycometabolic Bioorthogonal Chemistry‐Guided Viral Transduction for Robust Human T Cell Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T13%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glycometabolic%20Bioorthogonal%20Chemistry%E2%80%90Guided%20Viral%20Transduction%20for%20Robust%20Human%20T%20Cell%20Engineering&rft.jtitle=Advanced%20functional%20materials&rft.au=Pan,%20Hong&rft.date=2019-05-01&rft.volume=29&rft.issue=22&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201807528&rft_dat=%3Cproquest_cross%3E2230502770%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230502770&rft_id=info:pmid/&rfr_iscdi=true