Nuclear magnetic resonance as a quantitative tool to study interactions in biomacromolecules

High-resolution nuclear magnetic resonance (NMR) has emerged as one of the most versatile tools for the quantitative study of structure, kinetics, and thermodynamics of biomolecules and their interactions at atomic resolution. Traditionally, nuclear Overhauser enhancements (NOEs) and chemical shift...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied chemistry 2005-08, Vol.77 (8), p.1409-1424
Hauptverfasser: Grzesiek, S., Allan, M., Cordier, F., Häussinger, D., Jensen, P., Kahmann, J., Meier, S., Sass, H. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:High-resolution nuclear magnetic resonance (NMR) has emerged as one of the most versatile tools for the quantitative study of structure, kinetics, and thermodynamics of biomolecules and their interactions at atomic resolution. Traditionally, nuclear Overhauser enhancements (NOEs) and chemical shift perturbation methods are used to determine molecular geometries and to identify contact surfaces, but more recently, weak anisotropic orientation, anisotropic diffusion, and scalar couplings across hydrogen bonds provide additional information. Examples of such technologies are shown as applied to the quantitative characterization of function and thermodynamics of several biomacromolecules. In particular, (1) the structural and dynamical changes of the TipA multidrug resistance protein are followed upon antibiotic binding, (2) the trimer-monomer equilibrium and thermal unfolding of foldon, a small and very efficient trimerization domain of the T4 phagehead, is described in atomic detail, and (3) the changes of individual protein hydrogen bonds during thermal unfolding are quantitatively followed by scalar couplings across hydrogen bonds.
ISSN:0033-4545
1365-3075
DOI:10.1351/pac200577081409