Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)
This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical under...
Gespeichert in:
Veröffentlicht in: | Pure and applied chemistry 2006-03, Vol.78 (3), p.633-661 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | 3 |
container_start_page | 633 |
container_title | Pure and applied chemistry |
container_volume | 78 |
creator | Olivieri, Alejandro C. Faber, Nicolaas M. Ferré, Joan Boqué, Ricard Kalivas, John H. Mark, Howard |
description | This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics. |
doi_str_mv | 10.1351/pac200678030633 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230158165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230158165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbPXhe86CF2NvuR5OBBih-FgiLtOUy2u3VLm8TNRul_75YIguBpBub9ZuY9Qi4Z3DIu2aRFnQKoLAcOivMjMmJcyYRDJo_JCIDzREghT8lZ120AQBQiHRFc1tr4gK4Oe2q64HYYXFNTrFfUunXvTUcbS3fGu0Bt4-mu3wb3id5hMFTj1lV-IK5ny9f7KV0Y_V67OKBvpm18uDknJxa3nbn4qWOyfHxYTJ-T-cvTbHo_T7TgEBJtcsMUYqG0RBmN2CyzRllrdVplQkstLGcoZFpJAbIqBHLMRZZzWShZrPiYXA17W9989NFKuWl6X8eTZZpyYDJnSkbVZFBp33SdN7ZsffTs9yWD8pBj-SfHSNwNxBdug_Ers_b9Pja_6_8h42sH_htjxnmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230158165</pqid></control><display><type>article</type><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</creator><creatorcontrib>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</creatorcontrib><description>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</description><identifier>ISSN: 0033-4545</identifier><identifier>EISSN: 1365-3075</identifier><identifier>DOI: 10.1351/pac200678030633</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Calibration ; Chemometrics ; figures of merit ; Infrared analysis ; Infrared spectra ; IUPAC Analytical Chemistry Division ; limit of detection ; multivariate calibration ; Near infrared radiation ; prediction interval ; Production methods ; results reporting ; standard error of prediction ; Statistical methods ; Uncertainty</subject><ispartof>Pure and applied chemistry, 2006-03, Vol.78 (3), p.633-661</ispartof><rights>2013 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Faber, Nicolaas M.</creatorcontrib><creatorcontrib>Ferré, Joan</creatorcontrib><creatorcontrib>Boqué, Ricard</creatorcontrib><creatorcontrib>Kalivas, John H.</creatorcontrib><creatorcontrib>Mark, Howard</creatorcontrib><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><title>Pure and applied chemistry</title><description>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</description><subject>Calibration</subject><subject>Chemometrics</subject><subject>figures of merit</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>IUPAC Analytical Chemistry Division</subject><subject>limit of detection</subject><subject>multivariate calibration</subject><subject>Near infrared radiation</subject><subject>prediction interval</subject><subject>Production methods</subject><subject>results reporting</subject><subject>standard error of prediction</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><issn>0033-4545</issn><issn>1365-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbPXhe86CF2NvuR5OBBih-FgiLtOUy2u3VLm8TNRul_75YIguBpBub9ZuY9Qi4Z3DIu2aRFnQKoLAcOivMjMmJcyYRDJo_JCIDzREghT8lZ120AQBQiHRFc1tr4gK4Oe2q64HYYXFNTrFfUunXvTUcbS3fGu0Bt4-mu3wb3id5hMFTj1lV-IK5ny9f7KV0Y_V67OKBvpm18uDknJxa3nbn4qWOyfHxYTJ-T-cvTbHo_T7TgEBJtcsMUYqG0RBmN2CyzRllrdVplQkstLGcoZFpJAbIqBHLMRZZzWShZrPiYXA17W9989NFKuWl6X8eTZZpyYDJnSkbVZFBp33SdN7ZsffTs9yWD8pBj-SfHSNwNxBdug_Ers_b9Pja_6_8h42sH_htjxnmQ</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Olivieri, Alejandro C.</creator><creator>Faber, Nicolaas M.</creator><creator>Ferré, Joan</creator><creator>Boqué, Ricard</creator><creator>Kalivas, John H.</creator><creator>Mark, Howard</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20060301</creationdate><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><author>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Calibration</topic><topic>Chemometrics</topic><topic>figures of merit</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>IUPAC Analytical Chemistry Division</topic><topic>limit of detection</topic><topic>multivariate calibration</topic><topic>Near infrared radiation</topic><topic>prediction interval</topic><topic>Production methods</topic><topic>results reporting</topic><topic>standard error of prediction</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Faber, Nicolaas M.</creatorcontrib><creatorcontrib>Ferré, Joan</creatorcontrib><creatorcontrib>Boqué, Ricard</creatorcontrib><creatorcontrib>Kalivas, John H.</creatorcontrib><creatorcontrib>Mark, Howard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Pure and applied chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivieri, Alejandro C.</au><au>Faber, Nicolaas M.</au><au>Ferré, Joan</au><au>Boqué, Ricard</au><au>Kalivas, John H.</au><au>Mark, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</atitle><jtitle>Pure and applied chemistry</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>78</volume><issue>3</issue><spage>633</spage><epage>661</epage><pages>633-661</pages><issn>0033-4545</issn><eissn>1365-3075</eissn><abstract>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1351/pac200678030633</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4545 |
ispartof | Pure and applied chemistry, 2006-03, Vol.78 (3), p.633-661 |
issn | 0033-4545 1365-3075 |
language | eng |
recordid | cdi_proquest_journals_2230158165 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry |
subjects | Calibration Chemometrics figures of merit Infrared analysis Infrared spectra IUPAC Analytical Chemistry Division limit of detection multivariate calibration Near infrared radiation prediction interval Production methods results reporting standard error of prediction Statistical methods Uncertainty |
title | Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20estimation%20and%20figures%20of%20merit%20for%20multivariate%20calibration%20(IUPAC%20Technical%20Report)&rft.jtitle=Pure%20and%20applied%20chemistry&rft.au=Olivieri,%20Alejandro%20C.&rft.date=2006-03-01&rft.volume=78&rft.issue=3&rft.spage=633&rft.epage=661&rft.pages=633-661&rft.issn=0033-4545&rft.eissn=1365-3075&rft_id=info:doi/10.1351/pac200678030633&rft_dat=%3Cproquest_cross%3E2230158165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230158165&rft_id=info:pmid/&rfr_iscdi=true |