Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)

This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical under...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pure and applied chemistry 2006-03, Vol.78 (3), p.633-661
Hauptverfasser: Olivieri, Alejandro C., Faber, Nicolaas M., Ferré, Joan, Boqué, Ricard, Kalivas, John H., Mark, Howard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 661
container_issue 3
container_start_page 633
container_title Pure and applied chemistry
container_volume 78
creator Olivieri, Alejandro C.
Faber, Nicolaas M.
Ferré, Joan
Boqué, Ricard
Kalivas, John H.
Mark, Howard
description This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.
doi_str_mv 10.1351/pac200678030633
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2230158165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2230158165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFbPXhe86CF2NvuR5OBBih-FgiLtOUy2u3VLm8TNRul_75YIguBpBub9ZuY9Qi4Z3DIu2aRFnQKoLAcOivMjMmJcyYRDJo_JCIDzREghT8lZ120AQBQiHRFc1tr4gK4Oe2q64HYYXFNTrFfUunXvTUcbS3fGu0Bt4-mu3wb3id5hMFTj1lV-IK5ny9f7KV0Y_V67OKBvpm18uDknJxa3nbn4qWOyfHxYTJ-T-cvTbHo_T7TgEBJtcsMUYqG0RBmN2CyzRllrdVplQkstLGcoZFpJAbIqBHLMRZZzWShZrPiYXA17W9989NFKuWl6X8eTZZpyYDJnSkbVZFBp33SdN7ZsffTs9yWD8pBj-SfHSNwNxBdug_Ers_b9Pja_6_8h42sH_htjxnmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230158165</pqid></control><display><type>article</type><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</creator><creatorcontrib>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</creatorcontrib><description>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</description><identifier>ISSN: 0033-4545</identifier><identifier>EISSN: 1365-3075</identifier><identifier>DOI: 10.1351/pac200678030633</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Calibration ; Chemometrics ; figures of merit ; Infrared analysis ; Infrared spectra ; IUPAC Analytical Chemistry Division ; limit of detection ; multivariate calibration ; Near infrared radiation ; prediction interval ; Production methods ; results reporting ; standard error of prediction ; Statistical methods ; Uncertainty</subject><ispartof>Pure and applied chemistry, 2006-03, Vol.78 (3), p.633-661</ispartof><rights>2013 Walter de Gruyter GmbH, Berlin/Boston</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Faber, Nicolaas M.</creatorcontrib><creatorcontrib>Ferré, Joan</creatorcontrib><creatorcontrib>Boqué, Ricard</creatorcontrib><creatorcontrib>Kalivas, John H.</creatorcontrib><creatorcontrib>Mark, Howard</creatorcontrib><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><title>Pure and applied chemistry</title><description>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</description><subject>Calibration</subject><subject>Chemometrics</subject><subject>figures of merit</subject><subject>Infrared analysis</subject><subject>Infrared spectra</subject><subject>IUPAC Analytical Chemistry Division</subject><subject>limit of detection</subject><subject>multivariate calibration</subject><subject>Near infrared radiation</subject><subject>prediction interval</subject><subject>Production methods</subject><subject>results reporting</subject><subject>standard error of prediction</subject><subject>Statistical methods</subject><subject>Uncertainty</subject><issn>0033-4545</issn><issn>1365-3075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFbPXhe86CF2NvuR5OBBih-FgiLtOUy2u3VLm8TNRul_75YIguBpBub9ZuY9Qi4Z3DIu2aRFnQKoLAcOivMjMmJcyYRDJo_JCIDzREghT8lZ120AQBQiHRFc1tr4gK4Oe2q64HYYXFNTrFfUunXvTUcbS3fGu0Bt4-mu3wb3id5hMFTj1lV-IK5ny9f7KV0Y_V67OKBvpm18uDknJxa3nbn4qWOyfHxYTJ-T-cvTbHo_T7TgEBJtcsMUYqG0RBmN2CyzRllrdVplQkstLGcoZFpJAbIqBHLMRZZzWShZrPiYXA17W9989NFKuWl6X8eTZZpyYDJnSkbVZFBp33SdN7ZsffTs9yWD8pBj-SfHSNwNxBdug_Ers_b9Pja_6_8h42sH_htjxnmQ</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Olivieri, Alejandro C.</creator><creator>Faber, Nicolaas M.</creator><creator>Ferré, Joan</creator><creator>Boqué, Ricard</creator><creator>Kalivas, John H.</creator><creator>Mark, Howard</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20060301</creationdate><title>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</title><author>Olivieri, Alejandro C. ; Faber, Nicolaas M. ; Ferré, Joan ; Boqué, Ricard ; Kalivas, John H. ; Mark, Howard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-ce8e16aa96c5a5006f77fe6fffc2b74c5c4f31a452b5405b94a3a8478359659d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Calibration</topic><topic>Chemometrics</topic><topic>figures of merit</topic><topic>Infrared analysis</topic><topic>Infrared spectra</topic><topic>IUPAC Analytical Chemistry Division</topic><topic>limit of detection</topic><topic>multivariate calibration</topic><topic>Near infrared radiation</topic><topic>prediction interval</topic><topic>Production methods</topic><topic>results reporting</topic><topic>standard error of prediction</topic><topic>Statistical methods</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olivieri, Alejandro C.</creatorcontrib><creatorcontrib>Faber, Nicolaas M.</creatorcontrib><creatorcontrib>Ferré, Joan</creatorcontrib><creatorcontrib>Boqué, Ricard</creatorcontrib><creatorcontrib>Kalivas, John H.</creatorcontrib><creatorcontrib>Mark, Howard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Pure and applied chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olivieri, Alejandro C.</au><au>Faber, Nicolaas M.</au><au>Ferré, Joan</au><au>Boqué, Ricard</au><au>Kalivas, John H.</au><au>Mark, Howard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)</atitle><jtitle>Pure and applied chemistry</jtitle><date>2006-03-01</date><risdate>2006</risdate><volume>78</volume><issue>3</issue><spage>633</spage><epage>661</epage><pages>633-661</pages><issn>0033-4545</issn><eissn>1365-3075</eissn><abstract>This paper gives an introduction to multivariate calibration from a chemometrics perspective and reviews the various proposals to generalize the well-established univariate methodology to the multivariate domain. Univariate calibration leads to relatively simple models with a sound statistical underpinning. The associated uncertainty estimation and figures of merit are thoroughly covered in several official documents. However, univariate model predictions for unknown samples are only reliable if the signal is sufficiently selective for the analyte of interest. By contrast, multivariate calibration methods may produce valid predictions also from highly unselective data. A case in point is quantification from near-infrared (NIR) spectra. With the ever-increasing sophistication of analytical instruments inevitably comes a suite of multivariate calibration methods, each with its own underlying assumptions and statistical properties. As a result, uncertainty estimation and figures of merit for multivariate calibration methods has become a subject of active research, especially in the field of chemometrics.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1351/pac200678030633</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0033-4545
ispartof Pure and applied chemistry, 2006-03, Vol.78 (3), p.633-661
issn 0033-4545
1365-3075
language eng
recordid cdi_proquest_journals_2230158165
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects Calibration
Chemometrics
figures of merit
Infrared analysis
Infrared spectra
IUPAC Analytical Chemistry Division
limit of detection
multivariate calibration
Near infrared radiation
prediction interval
Production methods
results reporting
standard error of prediction
Statistical methods
Uncertainty
title Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T22%3A36%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20estimation%20and%20figures%20of%20merit%20for%20multivariate%20calibration%20(IUPAC%20Technical%20Report)&rft.jtitle=Pure%20and%20applied%20chemistry&rft.au=Olivieri,%20Alejandro%20C.&rft.date=2006-03-01&rft.volume=78&rft.issue=3&rft.spage=633&rft.epage=661&rft.pages=633-661&rft.issn=0033-4545&rft.eissn=1365-3075&rft_id=info:doi/10.1351/pac200678030633&rft_dat=%3Cproquest_cross%3E2230158165%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230158165&rft_id=info:pmid/&rfr_iscdi=true