Discovering varying patterns of Normal and interleaved ADLs in smart homes
People may do the same activity in many different ways hence, modeling and recognizing that activity based on data gathered through simple sensors like motion sensor is a complex task. In this paper, we propose an approach for activity mining and activity tracking which identifies frequent normal an...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2019-12, Vol.49 (12), p.4175-4188 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4188 |
---|---|
container_issue | 12 |
container_start_page | 4175 |
container_title | Applied intelligence (Dordrecht, Netherlands) |
container_volume | 49 |
creator | Raeiszadeh, Mahsa Tahayori, Hooman Visconti, Andrea |
description | People may do the same activity in many different ways hence, modeling and recognizing that activity based on data gathered through simple sensors like motion sensor is a complex task. In this paper, we propose an approach for activity mining and activity tracking which identifies frequent normal and interleaved activities that individuals perform. With this capability, we can track the occurrence of regular activities to monitor users and detect changes in an individual’s behavioral pattern and lifestyle. We have tested the proposed method using the datasets of Washington State University CASAS and the Massachusetts Institute of Technology (MIT) smart home projects. The obtained results show considerable improvements compared with existing methods. |
doi_str_mv | 10.1007/s10489-019-01493-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229807644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229807644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-de022a1fc326d16ec2e8b093d14f1c1c883ed8522e6be3c33ba7f726f36804023</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsFa_gKcFz9HZne0mOZbWvxS9KHhbtptZTWmTuJsG-u1NjODNw_BgeO_N8GPsUsC1AEhvogCV5QmIYVSOiT5iEzFLMUlVnh6zCeRSJVrn76fsLMYNACCCmLCnZRld3VEoqw_e2XAYtLFtS6GKvPb8uQ47u-W2KnhZ9dst2Y4KPl-uYr_gcWdDyz_rHcVzduLtNtLFr07Z293t6-IhWb3cPy7mq8ShxjYpCKS0wjuUuhCanKRsDTkWQnnhhMsypCKbSUl6TegQ1zb1qdQedQYKJE7Z1djbhPprT7E1m3ofqv6kkVLmGaRaqd4lR5cLdYyBvGlC2T97MALMwMyMzEzPzPwwM7oP4RiKzQCEwl_1P6lvEOJusA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229807644</pqid></control><display><type>article</type><title>Discovering varying patterns of Normal and interleaved ADLs in smart homes</title><source>SpringerLink Journals</source><creator>Raeiszadeh, Mahsa ; Tahayori, Hooman ; Visconti, Andrea</creator><creatorcontrib>Raeiszadeh, Mahsa ; Tahayori, Hooman ; Visconti, Andrea</creatorcontrib><description>People may do the same activity in many different ways hence, modeling and recognizing that activity based on data gathered through simple sensors like motion sensor is a complex task. In this paper, we propose an approach for activity mining and activity tracking which identifies frequent normal and interleaved activities that individuals perform. With this capability, we can track the occurrence of regular activities to monitor users and detect changes in an individual’s behavioral pattern and lifestyle. We have tested the proposed method using the datasets of Washington State University CASAS and the Massachusetts Institute of Technology (MIT) smart home projects. The obtained results show considerable improvements compared with existing methods.</description><identifier>ISSN: 0924-669X</identifier><identifier>EISSN: 1573-7497</identifier><identifier>DOI: 10.1007/s10489-019-01493-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activity recognition ; Artificial Intelligence ; Change detection ; Computer Science ; Machines ; Manufacturing ; Mechanical Engineering ; Motion sensors ; Processes ; Smart buildings ; Tracking</subject><ispartof>Applied intelligence (Dordrecht, Netherlands), 2019-12, Vol.49 (12), p.4175-4188</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Applied Intelligence is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-de022a1fc326d16ec2e8b093d14f1c1c883ed8522e6be3c33ba7f726f36804023</citedby><cites>FETCH-LOGICAL-c363t-de022a1fc326d16ec2e8b093d14f1c1c883ed8522e6be3c33ba7f726f36804023</cites><orcidid>0000-0003-2152-7760</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10489-019-01493-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10489-019-01493-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Raeiszadeh, Mahsa</creatorcontrib><creatorcontrib>Tahayori, Hooman</creatorcontrib><creatorcontrib>Visconti, Andrea</creatorcontrib><title>Discovering varying patterns of Normal and interleaved ADLs in smart homes</title><title>Applied intelligence (Dordrecht, Netherlands)</title><addtitle>Appl Intell</addtitle><description>People may do the same activity in many different ways hence, modeling and recognizing that activity based on data gathered through simple sensors like motion sensor is a complex task. In this paper, we propose an approach for activity mining and activity tracking which identifies frequent normal and interleaved activities that individuals perform. With this capability, we can track the occurrence of regular activities to monitor users and detect changes in an individual’s behavioral pattern and lifestyle. We have tested the proposed method using the datasets of Washington State University CASAS and the Massachusetts Institute of Technology (MIT) smart home projects. The obtained results show considerable improvements compared with existing methods.</description><subject>Activity recognition</subject><subject>Artificial Intelligence</subject><subject>Change detection</subject><subject>Computer Science</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Motion sensors</subject><subject>Processes</subject><subject>Smart buildings</subject><subject>Tracking</subject><issn>0924-669X</issn><issn>1573-7497</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE9Lw0AQxRdRsFa_gKcFz9HZne0mOZbWvxS9KHhbtptZTWmTuJsG-u1NjODNw_BgeO_N8GPsUsC1AEhvogCV5QmIYVSOiT5iEzFLMUlVnh6zCeRSJVrn76fsLMYNACCCmLCnZRld3VEoqw_e2XAYtLFtS6GKvPb8uQ47u-W2KnhZ9dst2Y4KPl-uYr_gcWdDyz_rHcVzduLtNtLFr07Z293t6-IhWb3cPy7mq8ShxjYpCKS0wjuUuhCanKRsDTkWQnnhhMsypCKbSUl6TegQ1zb1qdQedQYKJE7Z1djbhPprT7E1m3ofqv6kkVLmGaRaqd4lR5cLdYyBvGlC2T97MALMwMyMzEzPzPwwM7oP4RiKzQCEwl_1P6lvEOJusA</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Raeiszadeh, Mahsa</creator><creator>Tahayori, Hooman</creator><creator>Visconti, Andrea</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-2152-7760</orcidid></search><sort><creationdate>20191201</creationdate><title>Discovering varying patterns of Normal and interleaved ADLs in smart homes</title><author>Raeiszadeh, Mahsa ; Tahayori, Hooman ; Visconti, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-de022a1fc326d16ec2e8b093d14f1c1c883ed8522e6be3c33ba7f726f36804023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Activity recognition</topic><topic>Artificial Intelligence</topic><topic>Change detection</topic><topic>Computer Science</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Motion sensors</topic><topic>Processes</topic><topic>Smart buildings</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raeiszadeh, Mahsa</creatorcontrib><creatorcontrib>Tahayori, Hooman</creatorcontrib><creatorcontrib>Visconti, Andrea</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raeiszadeh, Mahsa</au><au>Tahayori, Hooman</au><au>Visconti, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering varying patterns of Normal and interleaved ADLs in smart homes</atitle><jtitle>Applied intelligence (Dordrecht, Netherlands)</jtitle><stitle>Appl Intell</stitle><date>2019-12-01</date><risdate>2019</risdate><volume>49</volume><issue>12</issue><spage>4175</spage><epage>4188</epage><pages>4175-4188</pages><issn>0924-669X</issn><eissn>1573-7497</eissn><abstract>People may do the same activity in many different ways hence, modeling and recognizing that activity based on data gathered through simple sensors like motion sensor is a complex task. In this paper, we propose an approach for activity mining and activity tracking which identifies frequent normal and interleaved activities that individuals perform. With this capability, we can track the occurrence of regular activities to monitor users and detect changes in an individual’s behavioral pattern and lifestyle. We have tested the proposed method using the datasets of Washington State University CASAS and the Massachusetts Institute of Technology (MIT) smart home projects. The obtained results show considerable improvements compared with existing methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10489-019-01493-6</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2152-7760</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-669X |
ispartof | Applied intelligence (Dordrecht, Netherlands), 2019-12, Vol.49 (12), p.4175-4188 |
issn | 0924-669X 1573-7497 |
language | eng |
recordid | cdi_proquest_journals_2229807644 |
source | SpringerLink Journals |
subjects | Activity recognition Artificial Intelligence Change detection Computer Science Machines Manufacturing Mechanical Engineering Motion sensors Processes Smart buildings Tracking |
title | Discovering varying patterns of Normal and interleaved ADLs in smart homes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T00%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20varying%20patterns%20of%20Normal%20and%20interleaved%20ADLs%20in%20smart%20homes&rft.jtitle=Applied%20intelligence%20(Dordrecht,%20Netherlands)&rft.au=Raeiszadeh,%20Mahsa&rft.date=2019-12-01&rft.volume=49&rft.issue=12&rft.spage=4175&rft.epage=4188&rft.pages=4175-4188&rft.issn=0924-669X&rft.eissn=1573-7497&rft_id=info:doi/10.1007/s10489-019-01493-6&rft_dat=%3Cproquest_cross%3E2229807644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229807644&rft_id=info:pmid/&rfr_iscdi=true |