Mono-camera based vehicle localization using lidar intensity map for automated driving
This paper reports an image-based localization for automated vehicle. The proposed method utilizes a mono-camera and an inertial measurement unit to estimate the vehicle pose. Self-localization is implemented by a map matching technique between the reference digital map and sensor observations. In g...
Gespeichert in:
Veröffentlicht in: | Artificial life and robotics 2019-06, Vol.24 (2), p.147-154 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 2 |
container_start_page | 147 |
container_title | Artificial life and robotics |
container_volume | 24 |
creator | Yoneda, Keisuke Yanase, Ryo Aldibaja, Mohammad Suganuma, Naoki Sato, Kei |
description | This paper reports an image-based localization for automated vehicle. The proposed method utilizes a mono-camera and an inertial measurement unit to estimate the vehicle pose. Self-localization is implemented by a map matching technique between the reference digital map and sensor observations. In general, the same types of sensors are used for map data and observations. However, this study is focused on the mono-camera based method using Lidar-based map for the purpose of a low-cost implementation. Image template matching is applied to provide a correlation distribution between the captured image and the predefined orthogonal map. A probability of the vehicle pose is then updated using the obtained correlation. The experiments were carried out for real driving data on an urban road. The results have verified that the proposed method estimates the vehicle position in 0.11[m] positioning errors on real-time. |
doi_str_mv | 10.1007/s10015-018-0502-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229664603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229664603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-da89a072b823221ee6cd60642fcefeb343c43f24e2e9c942e2f21dd0e516203e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FkkqbtURa_QPGiXkM2na5Z2mZN2oX115tlBU9eZubwvO_AQ8il4NeC8_Im5SkKxkXFeMGB6SMyE1ooVqpCH-dbSckKqKtTcpbSmnNVci1n5OMlDIE522O0dGkTNnSLn951SLvgbOe_7ejDQKfkhxXtfGMj9cOIQ_LjjvZ2Q9sQqZ3G0Nsxh5vot5k8Jyet7RJe_O45eb-_e1s8sufXh6fF7TNzsoKRNbaqLS9hWYEEEIjaNZprBa3DFpdSSadkCwoBa1crQGhBNA3HQmjgEuWcXB16NzF8TZhGsw5THPJLAwC11kpzmSlxoFwMKUVszSb63sadEdzs9ZmDPpP1mb0-o3MGDpmU2WGF8a_5_9APlrVzAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229664603</pqid></control><display><type>article</type><title>Mono-camera based vehicle localization using lidar intensity map for automated driving</title><source>SpringerLink Journals - AutoHoldings</source><creator>Yoneda, Keisuke ; Yanase, Ryo ; Aldibaja, Mohammad ; Suganuma, Naoki ; Sato, Kei</creator><creatorcontrib>Yoneda, Keisuke ; Yanase, Ryo ; Aldibaja, Mohammad ; Suganuma, Naoki ; Sato, Kei</creatorcontrib><description>This paper reports an image-based localization for automated vehicle. The proposed method utilizes a mono-camera and an inertial measurement unit to estimate the vehicle pose. Self-localization is implemented by a map matching technique between the reference digital map and sensor observations. In general, the same types of sensors are used for map data and observations. However, this study is focused on the mono-camera based method using Lidar-based map for the purpose of a low-cost implementation. Image template matching is applied to provide a correlation distribution between the captured image and the predefined orthogonal map. A probability of the vehicle pose is then updated using the obtained correlation. The experiments were carried out for real driving data on an urban road. The results have verified that the proposed method estimates the vehicle position in 0.11[m] positioning errors on real-time.</description><identifier>ISSN: 1433-5298</identifier><identifier>EISSN: 1614-7456</identifier><identifier>DOI: 10.1007/s10015-018-0502-6</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Artificial Intelligence ; Automation ; Cameras ; Computation by Abstract Devices ; Computer Science ; Control ; Digital mapping ; Inertial platforms ; Lidar ; Localization ; Mechatronics ; Original Article ; Robotics ; Template matching</subject><ispartof>Artificial life and robotics, 2019-06, Vol.24 (2), p.147-154</ispartof><rights>ISAROB 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-da89a072b823221ee6cd60642fcefeb343c43f24e2e9c942e2f21dd0e516203e3</citedby><cites>FETCH-LOGICAL-c382t-da89a072b823221ee6cd60642fcefeb343c43f24e2e9c942e2f21dd0e516203e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10015-018-0502-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10015-018-0502-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Yoneda, Keisuke</creatorcontrib><creatorcontrib>Yanase, Ryo</creatorcontrib><creatorcontrib>Aldibaja, Mohammad</creatorcontrib><creatorcontrib>Suganuma, Naoki</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><title>Mono-camera based vehicle localization using lidar intensity map for automated driving</title><title>Artificial life and robotics</title><addtitle>Artif Life Robotics</addtitle><description>This paper reports an image-based localization for automated vehicle. The proposed method utilizes a mono-camera and an inertial measurement unit to estimate the vehicle pose. Self-localization is implemented by a map matching technique between the reference digital map and sensor observations. In general, the same types of sensors are used for map data and observations. However, this study is focused on the mono-camera based method using Lidar-based map for the purpose of a low-cost implementation. Image template matching is applied to provide a correlation distribution between the captured image and the predefined orthogonal map. A probability of the vehicle pose is then updated using the obtained correlation. The experiments were carried out for real driving data on an urban road. The results have verified that the proposed method estimates the vehicle position in 0.11[m] positioning errors on real-time.</description><subject>Artificial Intelligence</subject><subject>Automation</subject><subject>Cameras</subject><subject>Computation by Abstract Devices</subject><subject>Computer Science</subject><subject>Control</subject><subject>Digital mapping</subject><subject>Inertial platforms</subject><subject>Lidar</subject><subject>Localization</subject><subject>Mechatronics</subject><subject>Original Article</subject><subject>Robotics</subject><subject>Template matching</subject><issn>1433-5298</issn><issn>1614-7456</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9FkkqbtURa_QPGiXkM2na5Z2mZN2oX115tlBU9eZubwvO_AQ8il4NeC8_Im5SkKxkXFeMGB6SMyE1ooVqpCH-dbSckKqKtTcpbSmnNVci1n5OMlDIE522O0dGkTNnSLn951SLvgbOe_7ejDQKfkhxXtfGMj9cOIQ_LjjvZ2Q9sQqZ3G0Nsxh5vot5k8Jyet7RJe_O45eb-_e1s8sufXh6fF7TNzsoKRNbaqLS9hWYEEEIjaNZprBa3DFpdSSadkCwoBa1crQGhBNA3HQmjgEuWcXB16NzF8TZhGsw5THPJLAwC11kpzmSlxoFwMKUVszSb63sadEdzs9ZmDPpP1mb0-o3MGDpmU2WGF8a_5_9APlrVzAA</recordid><startdate>20190614</startdate><enddate>20190614</enddate><creator>Yoneda, Keisuke</creator><creator>Yanase, Ryo</creator><creator>Aldibaja, Mohammad</creator><creator>Suganuma, Naoki</creator><creator>Sato, Kei</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190614</creationdate><title>Mono-camera based vehicle localization using lidar intensity map for automated driving</title><author>Yoneda, Keisuke ; Yanase, Ryo ; Aldibaja, Mohammad ; Suganuma, Naoki ; Sato, Kei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-da89a072b823221ee6cd60642fcefeb343c43f24e2e9c942e2f21dd0e516203e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial Intelligence</topic><topic>Automation</topic><topic>Cameras</topic><topic>Computation by Abstract Devices</topic><topic>Computer Science</topic><topic>Control</topic><topic>Digital mapping</topic><topic>Inertial platforms</topic><topic>Lidar</topic><topic>Localization</topic><topic>Mechatronics</topic><topic>Original Article</topic><topic>Robotics</topic><topic>Template matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoneda, Keisuke</creatorcontrib><creatorcontrib>Yanase, Ryo</creatorcontrib><creatorcontrib>Aldibaja, Mohammad</creatorcontrib><creatorcontrib>Suganuma, Naoki</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><collection>CrossRef</collection><jtitle>Artificial life and robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoneda, Keisuke</au><au>Yanase, Ryo</au><au>Aldibaja, Mohammad</au><au>Suganuma, Naoki</au><au>Sato, Kei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mono-camera based vehicle localization using lidar intensity map for automated driving</atitle><jtitle>Artificial life and robotics</jtitle><stitle>Artif Life Robotics</stitle><date>2019-06-14</date><risdate>2019</risdate><volume>24</volume><issue>2</issue><spage>147</spage><epage>154</epage><pages>147-154</pages><issn>1433-5298</issn><eissn>1614-7456</eissn><abstract>This paper reports an image-based localization for automated vehicle. The proposed method utilizes a mono-camera and an inertial measurement unit to estimate the vehicle pose. Self-localization is implemented by a map matching technique between the reference digital map and sensor observations. In general, the same types of sensors are used for map data and observations. However, this study is focused on the mono-camera based method using Lidar-based map for the purpose of a low-cost implementation. Image template matching is applied to provide a correlation distribution between the captured image and the predefined orthogonal map. A probability of the vehicle pose is then updated using the obtained correlation. The experiments were carried out for real driving data on an urban road. The results have verified that the proposed method estimates the vehicle position in 0.11[m] positioning errors on real-time.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s10015-018-0502-6</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-5298 |
ispartof | Artificial life and robotics, 2019-06, Vol.24 (2), p.147-154 |
issn | 1433-5298 1614-7456 |
language | eng |
recordid | cdi_proquest_journals_2229664603 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial Intelligence Automation Cameras Computation by Abstract Devices Computer Science Control Digital mapping Inertial platforms Lidar Localization Mechatronics Original Article Robotics Template matching |
title | Mono-camera based vehicle localization using lidar intensity map for automated driving |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mono-camera%20based%20vehicle%20localization%20using%20lidar%20intensity%20map%20for%20automated%20driving&rft.jtitle=Artificial%20life%20and%20robotics&rft.au=Yoneda,%20Keisuke&rft.date=2019-06-14&rft.volume=24&rft.issue=2&rft.spage=147&rft.epage=154&rft.pages=147-154&rft.issn=1433-5298&rft.eissn=1614-7456&rft_id=info:doi/10.1007/s10015-018-0502-6&rft_dat=%3Cproquest_cross%3E2229664603%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229664603&rft_id=info:pmid/&rfr_iscdi=true |