A closed-form solution for column-supported embankments with geosynthetic reinforcement
Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented t...
Gespeichert in:
Veröffentlicht in: | Geotextiles and geomembranes 2019-06, Vol.47 (3), p.389-401 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 401 |
---|---|
container_issue | 3 |
container_start_page | 389 |
container_title | Geotextiles and geomembranes |
container_volume | 47 |
creator | Zhao, Lin-Shuang Zhou, Wan-Huan Geng, Xueyu Yuen, Ka-Veng Fatahi, Behzad |
description | Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform. |
doi_str_mv | 10.1016/j.geotexmem.2019.01.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229640074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266114419300081</els_id><sourcerecordid>2229640074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</originalsourceid><addsrcrecordid>eNqFkMlKBDEQhoMoOC7PYIPnbqsy6SXHQdxA8KJ4DEm6WjNOd8Yk4_L2Zhjx6qn44V-oj7EzhAoBm4tl9UI-0ddIY8UBZQVYATR7bIZdK8t53Yl9NgPeNCWiEIfsKMYlAIhWdjP2vCjsykfqy8GHsYh-tUnOT0VWhc1inMq4Wa99SNQXNBo9vY00pVh8uvRa5OX4PaVXSs4WgdyUY5a2hhN2MOhVpNPfe8yerq8eL2_L-4ebu8vFfWnFHFPZoJQ4cEQDmiz2RkppEYzh0IPVsu04idrWNYeu1oPoW6151whra2O0MfNjdr7rXQf_vqGY1NJvwpQnFedcNgKgFdnV7lw2-BgDDWod3KjDt0JQW4pqqf4oqi1FBagyxZxc7JKUn_hwFFS0jiZLvQtkk-q9-7fjBwPBges</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229640074</pqid></control><display><type>article</type><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</creator><creatorcontrib>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</creatorcontrib><description>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</description><identifier>ISSN: 0266-1144</identifier><identifier>EISSN: 1879-3584</identifier><identifier>DOI: 10.1016/j.geotexmem.2019.01.006</identifier><language>eng</language><publisher>Essex: Elsevier Ltd</publisher><subject>Axisymmetric modelling ; Column-supported embankment ; Columns (structural) ; Deformation ; Embankments ; Enlargement ; Full scale tests ; Geosynthetics ; Load transfer ; Mathematical analysis ; Mathematical models ; Modulus ratio ; Parameter estimation ; Reinforcement ; Shape functions ; Soil arching ; Soil investigations ; Soils ; Stiffness ; Stress ratio ; Tensile strength ; Unit cell</subject><ispartof>Geotextiles and geomembranes, 2019-06, Vol.47 (3), p.389-401</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</citedby><cites>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geotexmem.2019.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Lin-Shuang</creatorcontrib><creatorcontrib>Zhou, Wan-Huan</creatorcontrib><creatorcontrib>Geng, Xueyu</creatorcontrib><creatorcontrib>Yuen, Ka-Veng</creatorcontrib><creatorcontrib>Fatahi, Behzad</creatorcontrib><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><title>Geotextiles and geomembranes</title><description>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</description><subject>Axisymmetric modelling</subject><subject>Column-supported embankment</subject><subject>Columns (structural)</subject><subject>Deformation</subject><subject>Embankments</subject><subject>Enlargement</subject><subject>Full scale tests</subject><subject>Geosynthetics</subject><subject>Load transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulus ratio</subject><subject>Parameter estimation</subject><subject>Reinforcement</subject><subject>Shape functions</subject><subject>Soil arching</subject><subject>Soil investigations</subject><subject>Soils</subject><subject>Stiffness</subject><subject>Stress ratio</subject><subject>Tensile strength</subject><subject>Unit cell</subject><issn>0266-1144</issn><issn>1879-3584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKBDEQhoMoOC7PYIPnbqsy6SXHQdxA8KJ4DEm6WjNOd8Yk4_L2Zhjx6qn44V-oj7EzhAoBm4tl9UI-0ddIY8UBZQVYATR7bIZdK8t53Yl9NgPeNCWiEIfsKMYlAIhWdjP2vCjsykfqy8GHsYh-tUnOT0VWhc1inMq4Wa99SNQXNBo9vY00pVh8uvRa5OX4PaVXSs4WgdyUY5a2hhN2MOhVpNPfe8yerq8eL2_L-4ebu8vFfWnFHFPZoJQ4cEQDmiz2RkppEYzh0IPVsu04idrWNYeu1oPoW6151whra2O0MfNjdr7rXQf_vqGY1NJvwpQnFedcNgKgFdnV7lw2-BgDDWod3KjDt0JQW4pqqf4oqi1FBagyxZxc7JKUn_hwFFS0jiZLvQtkk-q9-7fjBwPBges</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhao, Lin-Shuang</creator><creator>Zhou, Wan-Huan</creator><creator>Geng, Xueyu</creator><creator>Yuen, Ka-Veng</creator><creator>Fatahi, Behzad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190601</creationdate><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><author>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axisymmetric modelling</topic><topic>Column-supported embankment</topic><topic>Columns (structural)</topic><topic>Deformation</topic><topic>Embankments</topic><topic>Enlargement</topic><topic>Full scale tests</topic><topic>Geosynthetics</topic><topic>Load transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulus ratio</topic><topic>Parameter estimation</topic><topic>Reinforcement</topic><topic>Shape functions</topic><topic>Soil arching</topic><topic>Soil investigations</topic><topic>Soils</topic><topic>Stiffness</topic><topic>Stress ratio</topic><topic>Tensile strength</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lin-Shuang</creatorcontrib><creatorcontrib>Zhou, Wan-Huan</creatorcontrib><creatorcontrib>Geng, Xueyu</creatorcontrib><creatorcontrib>Yuen, Ka-Veng</creatorcontrib><creatorcontrib>Fatahi, Behzad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geotextiles and geomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lin-Shuang</au><au>Zhou, Wan-Huan</au><au>Geng, Xueyu</au><au>Yuen, Ka-Veng</au><au>Fatahi, Behzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A closed-form solution for column-supported embankments with geosynthetic reinforcement</atitle><jtitle>Geotextiles and geomembranes</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>389</spage><epage>401</epage><pages>389-401</pages><issn>0266-1144</issn><eissn>1879-3584</eissn><abstract>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</abstract><cop>Essex</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geotexmem.2019.01.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-1144 |
ispartof | Geotextiles and geomembranes, 2019-06, Vol.47 (3), p.389-401 |
issn | 0266-1144 1879-3584 |
language | eng |
recordid | cdi_proquest_journals_2229640074 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Axisymmetric modelling Column-supported embankment Columns (structural) Deformation Embankments Enlargement Full scale tests Geosynthetics Load transfer Mathematical analysis Mathematical models Modulus ratio Parameter estimation Reinforcement Shape functions Soil arching Soil investigations Soils Stiffness Stress ratio Tensile strength Unit cell |
title | A closed-form solution for column-supported embankments with geosynthetic reinforcement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20closed-form%20solution%20for%20column-supported%20embankments%20with%20geosynthetic%20reinforcement&rft.jtitle=Geotextiles%20and%20geomembranes&rft.au=Zhao,%20Lin-Shuang&rft.date=2019-06-01&rft.volume=47&rft.issue=3&rft.spage=389&rft.epage=401&rft.pages=389-401&rft.issn=0266-1144&rft.eissn=1879-3584&rft_id=info:doi/10.1016/j.geotexmem.2019.01.006&rft_dat=%3Cproquest_cross%3E2229640074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229640074&rft_id=info:pmid/&rft_els_id=S0266114419300081&rfr_iscdi=true |