A closed-form solution for column-supported embankments with geosynthetic reinforcement

Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geotextiles and geomembranes 2019-06, Vol.47 (3), p.389-401
Hauptverfasser: Zhao, Lin-Shuang, Zhou, Wan-Huan, Geng, Xueyu, Yuen, Ka-Veng, Fatahi, Behzad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 3
container_start_page 389
container_title Geotextiles and geomembranes
container_volume 47
creator Zhao, Lin-Shuang
Zhou, Wan-Huan
Geng, Xueyu
Yuen, Ka-Veng
Fatahi, Behzad
description Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.
doi_str_mv 10.1016/j.geotexmem.2019.01.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229640074</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266114419300081</els_id><sourcerecordid>2229640074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</originalsourceid><addsrcrecordid>eNqFkMlKBDEQhoMoOC7PYIPnbqsy6SXHQdxA8KJ4DEm6WjNOd8Yk4_L2Zhjx6qn44V-oj7EzhAoBm4tl9UI-0ddIY8UBZQVYATR7bIZdK8t53Yl9NgPeNCWiEIfsKMYlAIhWdjP2vCjsykfqy8GHsYh-tUnOT0VWhc1inMq4Wa99SNQXNBo9vY00pVh8uvRa5OX4PaVXSs4WgdyUY5a2hhN2MOhVpNPfe8yerq8eL2_L-4ebu8vFfWnFHFPZoJQ4cEQDmiz2RkppEYzh0IPVsu04idrWNYeu1oPoW6151whra2O0MfNjdr7rXQf_vqGY1NJvwpQnFedcNgKgFdnV7lw2-BgDDWod3KjDt0JQW4pqqf4oqi1FBagyxZxc7JKUn_hwFFS0jiZLvQtkk-q9-7fjBwPBges</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229640074</pqid></control><display><type>article</type><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</creator><creatorcontrib>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</creatorcontrib><description>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</description><identifier>ISSN: 0266-1144</identifier><identifier>EISSN: 1879-3584</identifier><identifier>DOI: 10.1016/j.geotexmem.2019.01.006</identifier><language>eng</language><publisher>Essex: Elsevier Ltd</publisher><subject>Axisymmetric modelling ; Column-supported embankment ; Columns (structural) ; Deformation ; Embankments ; Enlargement ; Full scale tests ; Geosynthetics ; Load transfer ; Mathematical analysis ; Mathematical models ; Modulus ratio ; Parameter estimation ; Reinforcement ; Shape functions ; Soil arching ; Soil investigations ; Soils ; Stiffness ; Stress ratio ; Tensile strength ; Unit cell</subject><ispartof>Geotextiles and geomembranes, 2019-06, Vol.47 (3), p.389-401</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jun 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</citedby><cites>FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geotexmem.2019.01.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Zhao, Lin-Shuang</creatorcontrib><creatorcontrib>Zhou, Wan-Huan</creatorcontrib><creatorcontrib>Geng, Xueyu</creatorcontrib><creatorcontrib>Yuen, Ka-Veng</creatorcontrib><creatorcontrib>Fatahi, Behzad</creatorcontrib><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><title>Geotextiles and geomembranes</title><description>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</description><subject>Axisymmetric modelling</subject><subject>Column-supported embankment</subject><subject>Columns (structural)</subject><subject>Deformation</subject><subject>Embankments</subject><subject>Enlargement</subject><subject>Full scale tests</subject><subject>Geosynthetics</subject><subject>Load transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Modulus ratio</subject><subject>Parameter estimation</subject><subject>Reinforcement</subject><subject>Shape functions</subject><subject>Soil arching</subject><subject>Soil investigations</subject><subject>Soils</subject><subject>Stiffness</subject><subject>Stress ratio</subject><subject>Tensile strength</subject><subject>Unit cell</subject><issn>0266-1144</issn><issn>1879-3584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMlKBDEQhoMoOC7PYIPnbqsy6SXHQdxA8KJ4DEm6WjNOd8Yk4_L2Zhjx6qn44V-oj7EzhAoBm4tl9UI-0ddIY8UBZQVYATR7bIZdK8t53Yl9NgPeNCWiEIfsKMYlAIhWdjP2vCjsykfqy8GHsYh-tUnOT0VWhc1inMq4Wa99SNQXNBo9vY00pVh8uvRa5OX4PaVXSs4WgdyUY5a2hhN2MOhVpNPfe8yerq8eL2_L-4ebu8vFfWnFHFPZoJQ4cEQDmiz2RkppEYzh0IPVsu04idrWNYeu1oPoW6151whra2O0MfNjdr7rXQf_vqGY1NJvwpQnFedcNgKgFdnV7lw2-BgDDWod3KjDt0JQW4pqqf4oqi1FBagyxZxc7JKUn_hwFFS0jiZLvQtkk-q9-7fjBwPBges</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhao, Lin-Shuang</creator><creator>Zhou, Wan-Huan</creator><creator>Geng, Xueyu</creator><creator>Yuen, Ka-Veng</creator><creator>Fatahi, Behzad</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20190601</creationdate><title>A closed-form solution for column-supported embankments with geosynthetic reinforcement</title><author>Zhao, Lin-Shuang ; Zhou, Wan-Huan ; Geng, Xueyu ; Yuen, Ka-Veng ; Fatahi, Behzad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-61991f211b0aec1db999c10bb20d0ca9782e45c552085af4d7aa2864cc5bbabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Axisymmetric modelling</topic><topic>Column-supported embankment</topic><topic>Columns (structural)</topic><topic>Deformation</topic><topic>Embankments</topic><topic>Enlargement</topic><topic>Full scale tests</topic><topic>Geosynthetics</topic><topic>Load transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Modulus ratio</topic><topic>Parameter estimation</topic><topic>Reinforcement</topic><topic>Shape functions</topic><topic>Soil arching</topic><topic>Soil investigations</topic><topic>Soils</topic><topic>Stiffness</topic><topic>Stress ratio</topic><topic>Tensile strength</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Lin-Shuang</creatorcontrib><creatorcontrib>Zhou, Wan-Huan</creatorcontrib><creatorcontrib>Geng, Xueyu</creatorcontrib><creatorcontrib>Yuen, Ka-Veng</creatorcontrib><creatorcontrib>Fatahi, Behzad</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geotextiles and geomembranes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Lin-Shuang</au><au>Zhou, Wan-Huan</au><au>Geng, Xueyu</au><au>Yuen, Ka-Veng</au><au>Fatahi, Behzad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A closed-form solution for column-supported embankments with geosynthetic reinforcement</atitle><jtitle>Geotextiles and geomembranes</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>47</volume><issue>3</issue><spage>389</spage><epage>401</epage><pages>389-401</pages><issn>0266-1144</issn><eissn>1879-3584</eissn><abstract>Soil arching effect results from the non-uniform stiffness in a geosynthetic-reinforced and column-supported embankment system. However, most theoretical models ignore the impact of modulus difference on the calculation of load transfer. In this study, a generalized mathematical model is presented to investigate the soil arching effect, with consideration given to the modulus ratio between columns and the surrounding soil. For simplification, a cylindrical unit cell is drawn to study the deformation compatibility among embankment fills, geosynthetics, columns, and subsoils. A deformed shape function is introduced to describe the relationship between the column and the adjacent soil. The measured data gained from a full-scale test are applied to demonstrate the application of this model. In the parametric study, certain influencing factors, such as column spacing, column length, embankment height, modulus ratio, and tensile strength of geosynthetic reinforcement, are analyzed to investigate the performance of the embankment system. This demonstrates that the inclusion of a geosynthetic reinforcement or enlargement of the modulus ratio can increase the load transfer efficiency. When enhancing the embankment height or applying an additional loading, the height of the load transfer platform tends to be reduced. However, a relatively long column has little impact on the load transfer platform.</abstract><cop>Essex</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geotexmem.2019.01.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0266-1144
ispartof Geotextiles and geomembranes, 2019-06, Vol.47 (3), p.389-401
issn 0266-1144
1879-3584
language eng
recordid cdi_proquest_journals_2229640074
source Elsevier ScienceDirect Journals Complete
subjects Axisymmetric modelling
Column-supported embankment
Columns (structural)
Deformation
Embankments
Enlargement
Full scale tests
Geosynthetics
Load transfer
Mathematical analysis
Mathematical models
Modulus ratio
Parameter estimation
Reinforcement
Shape functions
Soil arching
Soil investigations
Soils
Stiffness
Stress ratio
Tensile strength
Unit cell
title A closed-form solution for column-supported embankments with geosynthetic reinforcement
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20closed-form%20solution%20for%20column-supported%20embankments%20with%20geosynthetic%20reinforcement&rft.jtitle=Geotextiles%20and%20geomembranes&rft.au=Zhao,%20Lin-Shuang&rft.date=2019-06-01&rft.volume=47&rft.issue=3&rft.spage=389&rft.epage=401&rft.pages=389-401&rft.issn=0266-1144&rft.eissn=1879-3584&rft_id=info:doi/10.1016/j.geotexmem.2019.01.006&rft_dat=%3Cproquest_cross%3E2229640074%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229640074&rft_id=info:pmid/&rft_els_id=S0266114419300081&rfr_iscdi=true