Effective use of metallic Z-pins for composites' through-thickness reinforcement
Z-pins offer effective through-thickness reinforcement for laminated composites. Various studies have however, shown that metal Z-pins are less effective at bridging Mode I delaminations than carbon-fibre composite Z-pins, due to poor interfacial bonding with the laminate. This is exacerbated by hig...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2019-05, Vol.175, p.77-84 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 84 |
---|---|
container_issue | |
container_start_page | 77 |
container_title | Composites science and technology |
container_volume | 175 |
creator | M'membe, Beene Yasaee, Mehdi Hallett, Stephen R. Partridge, Ivana K. |
description | Z-pins offer effective through-thickness reinforcement for laminated composites. Various studies have however, shown that metal Z-pins are less effective at bridging Mode I delaminations than carbon-fibre composite Z-pins, due to poor interfacial bonding with the laminate. This is exacerbated by high thermal mismatch between the metallic Z-pins and the laminate. This study investigates inserting metallic Z-pins at angles offset from the laminate normal, to improve the Mode I bridging in composites. The effects on the apparent fracture toughness under pure and mixed Mode I/II loads using single pin specimens is investigated. Results show that, unlike orthogonally inserted metal Z-pins, inclined Z-pins exhibit high energy absorption throughout the mixed mode range. Double Cantilever Beam (DCB) tests show that the inclined metal Z-pins increase the Mode I apparent fracture toughness by a factor of 2 compared to traditional carbon fibre Z-pins. In End Loaded Split (ELS) tests, the Mode II apparent fracture toughness of inclined stainless steel Z-pins, although less than their uninclined equivalent, is greater than that of carbon fibre Z-pins. |
doi_str_mv | 10.1016/j.compscitech.2019.02.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229639218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353818322978</els_id><sourcerecordid>2229639218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c437t-bee78c5d4f8b236c012842c0592bb571855fb0a21977fb44e250d2b632c9b96e3</originalsourceid><addsrcrecordid>eNqNkE9LxDAQxYMouK5-h4gHT61J2rTNUZb1DyzoQS9eQpNObOq2qUlW8NubZT14FAbm8nvvzTyELinJKaHVzZBrN85B2wi6zxmhIicsTXmEFrSpRUYJJ8doQVhVZQUvmlN0FsJACKm5YAv0vDYGdLRfgHcBsDN4hNhut1bjt2y2U8DGebzPcCFlhGsce-92730We6s_JggBe7BTojSMMMVzdGLabYCL371Er3frl9VDtnm6f1zdbjJdFnXMFEDdaN6VplGsqDShrCmZJukopXhNG86NIi2joq6NKktgnHRMVQXTQokKiiW6OvjO3n3uIEQ5uJ2fUqRkjImqEIw2iRIHSnsXggcjZ2_H1n9LSuS-QDnIPwXKfYGSsDRl0q4OWkhvfFnwMlEwaeisT5XJztl_uPwAtT9_-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229639218</pqid></control><display><type>article</type><title>Effective use of metallic Z-pins for composites' through-thickness reinforcement</title><source>Elsevier ScienceDirect Journals</source><creator>M'membe, Beene ; Yasaee, Mehdi ; Hallett, Stephen R. ; Partridge, Ivana K.</creator><creatorcontrib>M'membe, Beene ; Yasaee, Mehdi ; Hallett, Stephen R. ; Partridge, Ivana K.</creatorcontrib><description>Z-pins offer effective through-thickness reinforcement for laminated composites. Various studies have however, shown that metal Z-pins are less effective at bridging Mode I delaminations than carbon-fibre composite Z-pins, due to poor interfacial bonding with the laminate. This is exacerbated by high thermal mismatch between the metallic Z-pins and the laminate. This study investigates inserting metallic Z-pins at angles offset from the laminate normal, to improve the Mode I bridging in composites. The effects on the apparent fracture toughness under pure and mixed Mode I/II loads using single pin specimens is investigated. Results show that, unlike orthogonally inserted metal Z-pins, inclined Z-pins exhibit high energy absorption throughout the mixed mode range. Double Cantilever Beam (DCB) tests show that the inclined metal Z-pins increase the Mode I apparent fracture toughness by a factor of 2 compared to traditional carbon fibre Z-pins. In End Loaded Split (ELS) tests, the Mode II apparent fracture toughness of inclined stainless steel Z-pins, although less than their uninclined equivalent, is greater than that of carbon fibre Z-pins.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2019.02.024</identifier><language>eng</language><publisher>Barking: Elsevier Ltd</publisher><subject>Adhesives ; Cantilever beams ; Carbon fiber reinforced plastics ; Carbon fibers ; Composite materials ; Energy absorption ; Fiber composites ; Fracture toughness ; Inclined insertion ; Metal Z-pins ; Metals ; Stainless steels ; Thermal mismatch ; Thickness</subject><ispartof>Composites science and technology, 2019-05, Vol.175, p.77-84</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c437t-bee78c5d4f8b236c012842c0592bb571855fb0a21977fb44e250d2b632c9b96e3</citedby><cites>FETCH-LOGICAL-c437t-bee78c5d4f8b236c012842c0592bb571855fb0a21977fb44e250d2b632c9b96e3</cites><orcidid>0000-0003-4218-420X ; 0000-0002-7137-7011 ; 0000-0001-8452-575X ; 0000-0003-0751-8323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0266353818322978$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>M'membe, Beene</creatorcontrib><creatorcontrib>Yasaee, Mehdi</creatorcontrib><creatorcontrib>Hallett, Stephen R.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><title>Effective use of metallic Z-pins for composites' through-thickness reinforcement</title><title>Composites science and technology</title><description>Z-pins offer effective through-thickness reinforcement for laminated composites. Various studies have however, shown that metal Z-pins are less effective at bridging Mode I delaminations than carbon-fibre composite Z-pins, due to poor interfacial bonding with the laminate. This is exacerbated by high thermal mismatch between the metallic Z-pins and the laminate. This study investigates inserting metallic Z-pins at angles offset from the laminate normal, to improve the Mode I bridging in composites. The effects on the apparent fracture toughness under pure and mixed Mode I/II loads using single pin specimens is investigated. Results show that, unlike orthogonally inserted metal Z-pins, inclined Z-pins exhibit high energy absorption throughout the mixed mode range. Double Cantilever Beam (DCB) tests show that the inclined metal Z-pins increase the Mode I apparent fracture toughness by a factor of 2 compared to traditional carbon fibre Z-pins. In End Loaded Split (ELS) tests, the Mode II apparent fracture toughness of inclined stainless steel Z-pins, although less than their uninclined equivalent, is greater than that of carbon fibre Z-pins.</description><subject>Adhesives</subject><subject>Cantilever beams</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fibers</subject><subject>Composite materials</subject><subject>Energy absorption</subject><subject>Fiber composites</subject><subject>Fracture toughness</subject><subject>Inclined insertion</subject><subject>Metal Z-pins</subject><subject>Metals</subject><subject>Stainless steels</subject><subject>Thermal mismatch</subject><subject>Thickness</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkE9LxDAQxYMouK5-h4gHT61J2rTNUZb1DyzoQS9eQpNObOq2qUlW8NubZT14FAbm8nvvzTyELinJKaHVzZBrN85B2wi6zxmhIicsTXmEFrSpRUYJJ8doQVhVZQUvmlN0FsJACKm5YAv0vDYGdLRfgHcBsDN4hNhut1bjt2y2U8DGebzPcCFlhGsce-92730We6s_JggBe7BTojSMMMVzdGLabYCL371Er3frl9VDtnm6f1zdbjJdFnXMFEDdaN6VplGsqDShrCmZJukopXhNG86NIi2joq6NKktgnHRMVQXTQokKiiW6OvjO3n3uIEQ5uJ2fUqRkjImqEIw2iRIHSnsXggcjZ2_H1n9LSuS-QDnIPwXKfYGSsDRl0q4OWkhvfFnwMlEwaeisT5XJztl_uPwAtT9_-A</recordid><startdate>20190503</startdate><enddate>20190503</enddate><creator>M'membe, Beene</creator><creator>Yasaee, Mehdi</creator><creator>Hallett, Stephen R.</creator><creator>Partridge, Ivana K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0003-4218-420X</orcidid><orcidid>https://orcid.org/0000-0002-7137-7011</orcidid><orcidid>https://orcid.org/0000-0001-8452-575X</orcidid><orcidid>https://orcid.org/0000-0003-0751-8323</orcidid></search><sort><creationdate>20190503</creationdate><title>Effective use of metallic Z-pins for composites' through-thickness reinforcement</title><author>M'membe, Beene ; Yasaee, Mehdi ; Hallett, Stephen R. ; Partridge, Ivana K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c437t-bee78c5d4f8b236c012842c0592bb571855fb0a21977fb44e250d2b632c9b96e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adhesives</topic><topic>Cantilever beams</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fibers</topic><topic>Composite materials</topic><topic>Energy absorption</topic><topic>Fiber composites</topic><topic>Fracture toughness</topic><topic>Inclined insertion</topic><topic>Metal Z-pins</topic><topic>Metals</topic><topic>Stainless steels</topic><topic>Thermal mismatch</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>M'membe, Beene</creatorcontrib><creatorcontrib>Yasaee, Mehdi</creatorcontrib><creatorcontrib>Hallett, Stephen R.</creatorcontrib><creatorcontrib>Partridge, Ivana K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>M'membe, Beene</au><au>Yasaee, Mehdi</au><au>Hallett, Stephen R.</au><au>Partridge, Ivana K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective use of metallic Z-pins for composites' through-thickness reinforcement</atitle><jtitle>Composites science and technology</jtitle><date>2019-05-03</date><risdate>2019</risdate><volume>175</volume><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><abstract>Z-pins offer effective through-thickness reinforcement for laminated composites. Various studies have however, shown that metal Z-pins are less effective at bridging Mode I delaminations than carbon-fibre composite Z-pins, due to poor interfacial bonding with the laminate. This is exacerbated by high thermal mismatch between the metallic Z-pins and the laminate. This study investigates inserting metallic Z-pins at angles offset from the laminate normal, to improve the Mode I bridging in composites. The effects on the apparent fracture toughness under pure and mixed Mode I/II loads using single pin specimens is investigated. Results show that, unlike orthogonally inserted metal Z-pins, inclined Z-pins exhibit high energy absorption throughout the mixed mode range. Double Cantilever Beam (DCB) tests show that the inclined metal Z-pins increase the Mode I apparent fracture toughness by a factor of 2 compared to traditional carbon fibre Z-pins. In End Loaded Split (ELS) tests, the Mode II apparent fracture toughness of inclined stainless steel Z-pins, although less than their uninclined equivalent, is greater than that of carbon fibre Z-pins.</abstract><cop>Barking</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2019.02.024</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4218-420X</orcidid><orcidid>https://orcid.org/0000-0002-7137-7011</orcidid><orcidid>https://orcid.org/0000-0001-8452-575X</orcidid><orcidid>https://orcid.org/0000-0003-0751-8323</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2019-05, Vol.175, p.77-84 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_journals_2229639218 |
source | Elsevier ScienceDirect Journals |
subjects | Adhesives Cantilever beams Carbon fiber reinforced plastics Carbon fibers Composite materials Energy absorption Fiber composites Fracture toughness Inclined insertion Metal Z-pins Metals Stainless steels Thermal mismatch Thickness |
title | Effective use of metallic Z-pins for composites' through-thickness reinforcement |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A56%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20use%20of%20metallic%20Z-pins%20for%20composites'%20through-thickness%20reinforcement&rft.jtitle=Composites%20science%20and%20technology&rft.au=M'membe,%20Beene&rft.date=2019-05-03&rft.volume=175&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=0266-3538&rft.eissn=1879-1050&rft_id=info:doi/10.1016/j.compscitech.2019.02.024&rft_dat=%3Cproquest_cross%3E2229639218%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229639218&rft_id=info:pmid/&rft_els_id=S0266353818322978&rfr_iscdi=true |