A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids
The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all information...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2019-06, Vol.11 (6), p.533-542 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 542 |
---|---|
container_issue | 6 |
container_start_page | 533 |
container_title | Nature chemistry |
container_volume | 11 |
creator | Arangundy-Franklin, Sebastian Taylor, Alexander I. Porebski, Benjamin T. Genna, Vito Peak-Chew, Sew Vaisman, Alexandra Woodgate, Roger Orozco, Modesto Holliger, Philipp |
description | The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution. |
doi_str_mv | 10.1038/s41557-019-0255-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229623985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229623985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EoqXwAFyQJc4Brx0n8bGq-JOQuMDZchynSZs4xU6E8va4pJQTh9WudmZnpQ-hayB3QFh272PgPI0IiIhQzqP4BM0h3Q8sFqfHmZEZuvB-Q0jCGSTnaMaAAEAKc1QvsR9tX5m-1nht7E_fdc3YGoe_6r7CyuLB6kq5tSlwrvQ276zBujJt7Xs3hpUPQmexarZjg3dV50NZ1RtsB92YkKd0XfhLdFaqxpurQ1-gj8eH99Vz9Pr29LJavkY65rSPUp0BZalKS12CKbnIMwGUlFQXmkKWiFjnXKREJ2XQY5YL4CwzJREQZwXJ2QLdTrk7130Oxvdy0w3OhpeSUioSykTGgwsml3ad986UcufqVrlRApF7uHKCKwNcuYcr43Bzc0ge8tYUx4tfmsFAJ4MPkl0b9_f6_9RvRfyFZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229623985</pqid></control><display><type>article</type><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</creator><creatorcontrib>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</creatorcontrib><description>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0255-4</identifier><identifier>PMID: 31011171</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/552 ; 639/638/92/610 ; Analytical Chemistry ; Aptamers ; Aptamers, Nucleotide - chemistry ; Backbone ; Biochemistry ; Biological evolution ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deoxyribonucleic acid ; Directed evolution ; Directed Molecular Evolution - methods ; DNA ; DNA - chemical synthesis ; DNA - chemistry ; DNA - genetics ; DNA biosynthesis ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - genetics ; Enzymatic synthesis ; Exploration ; Inorganic Chemistry ; Mutation ; Nucleic Acid Conformation ; Nucleic acids ; Organic Chemistry ; Organophosphonates - chemical synthesis ; Organophosphonates - chemistry ; Phosphonates ; Physical Chemistry ; Physicochemical properties ; Polyelectrolytes ; Polymers ; Protein Engineering - methods ; Streptavidin ; Streptavidin - chemistry ; Thermococcaceae - enzymology ; Thermococcales - enzymology</subject><ispartof>Nature chemistry, 2019-06, Vol.11 (6), p.533-542</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</citedby><cites>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</cites><orcidid>0000-0003-1398-0442 ; 0000-0002-3440-9854 ; 0000-0002-4664-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0255-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0255-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31011171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arangundy-Franklin, Sebastian</creatorcontrib><creatorcontrib>Taylor, Alexander I.</creatorcontrib><creatorcontrib>Porebski, Benjamin T.</creatorcontrib><creatorcontrib>Genna, Vito</creatorcontrib><creatorcontrib>Peak-Chew, Sew</creatorcontrib><creatorcontrib>Vaisman, Alexandra</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Holliger, Philipp</creatorcontrib><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</description><subject>631/92/552</subject><subject>639/638/92/610</subject><subject>Analytical Chemistry</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Backbone</subject><subject>Biochemistry</subject><subject>Biological evolution</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>Directed Molecular Evolution - methods</subject><subject>DNA</subject><subject>DNA - chemical synthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA biosynthesis</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>Enzymatic synthesis</subject><subject>Exploration</subject><subject>Inorganic Chemistry</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Organic Chemistry</subject><subject>Organophosphonates - chemical synthesis</subject><subject>Organophosphonates - chemistry</subject><subject>Phosphonates</subject><subject>Physical Chemistry</subject><subject>Physicochemical properties</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Protein Engineering - methods</subject><subject>Streptavidin</subject><subject>Streptavidin - chemistry</subject><subject>Thermococcaceae - enzymology</subject><subject>Thermococcales - enzymology</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EoqXwAFyQJc4Brx0n8bGq-JOQuMDZchynSZs4xU6E8va4pJQTh9WudmZnpQ-hayB3QFh272PgPI0IiIhQzqP4BM0h3Q8sFqfHmZEZuvB-Q0jCGSTnaMaAAEAKc1QvsR9tX5m-1nht7E_fdc3YGoe_6r7CyuLB6kq5tSlwrvQ276zBujJt7Xs3hpUPQmexarZjg3dV50NZ1RtsB92YkKd0XfhLdFaqxpurQ1-gj8eH99Vz9Pr29LJavkY65rSPUp0BZalKS12CKbnIMwGUlFQXmkKWiFjnXKREJ2XQY5YL4CwzJREQZwXJ2QLdTrk7130Oxvdy0w3OhpeSUioSykTGgwsml3ad986UcufqVrlRApF7uHKCKwNcuYcr43Bzc0ge8tYUx4tfmsFAJ4MPkl0b9_f6_9RvRfyFZw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Arangundy-Franklin, Sebastian</creator><creator>Taylor, Alexander I.</creator><creator>Porebski, Benjamin T.</creator><creator>Genna, Vito</creator><creator>Peak-Chew, Sew</creator><creator>Vaisman, Alexandra</creator><creator>Woodgate, Roger</creator><creator>Orozco, Modesto</creator><creator>Holliger, Philipp</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1398-0442</orcidid><orcidid>https://orcid.org/0000-0002-3440-9854</orcidid><orcidid>https://orcid.org/0000-0002-4664-8086</orcidid></search><sort><creationdate>20190601</creationdate><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><author>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/92/552</topic><topic>639/638/92/610</topic><topic>Analytical Chemistry</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Backbone</topic><topic>Biochemistry</topic><topic>Biological evolution</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>Directed Molecular Evolution - methods</topic><topic>DNA</topic><topic>DNA - chemical synthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA biosynthesis</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>Enzymatic synthesis</topic><topic>Exploration</topic><topic>Inorganic Chemistry</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Organic Chemistry</topic><topic>Organophosphonates - chemical synthesis</topic><topic>Organophosphonates - chemistry</topic><topic>Phosphonates</topic><topic>Physical Chemistry</topic><topic>Physicochemical properties</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Protein Engineering - methods</topic><topic>Streptavidin</topic><topic>Streptavidin - chemistry</topic><topic>Thermococcaceae - enzymology</topic><topic>Thermococcales - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arangundy-Franklin, Sebastian</creatorcontrib><creatorcontrib>Taylor, Alexander I.</creatorcontrib><creatorcontrib>Porebski, Benjamin T.</creatorcontrib><creatorcontrib>Genna, Vito</creatorcontrib><creatorcontrib>Peak-Chew, Sew</creatorcontrib><creatorcontrib>Vaisman, Alexandra</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Holliger, Philipp</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arangundy-Franklin, Sebastian</au><au>Taylor, Alexander I.</au><au>Porebski, Benjamin T.</au><au>Genna, Vito</au><au>Peak-Chew, Sew</au><au>Vaisman, Alexandra</au><au>Woodgate, Roger</au><au>Orozco, Modesto</au><au>Holliger, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>533</spage><epage>542</epage><pages>533-542</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules.
The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31011171</pmid><doi>10.1038/s41557-019-0255-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1398-0442</orcidid><orcidid>https://orcid.org/0000-0002-3440-9854</orcidid><orcidid>https://orcid.org/0000-0002-4664-8086</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2019-06, Vol.11 (6), p.533-542 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_journals_2229623985 |
source | MEDLINE; Nature; Springer Nature - Complete Springer Journals |
subjects | 631/92/552 639/638/92/610 Analytical Chemistry Aptamers Aptamers, Nucleotide - chemistry Backbone Biochemistry Biological evolution Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Deoxyribonucleic acid Directed evolution Directed Molecular Evolution - methods DNA DNA - chemical synthesis DNA - chemistry DNA - genetics DNA biosynthesis DNA-Directed DNA Polymerase - chemistry DNA-Directed DNA Polymerase - genetics Enzymatic synthesis Exploration Inorganic Chemistry Mutation Nucleic Acid Conformation Nucleic acids Organic Chemistry Organophosphonates - chemical synthesis Organophosphonates - chemistry Phosphonates Physical Chemistry Physicochemical properties Polyelectrolytes Polymers Protein Engineering - methods Streptavidin Streptavidin - chemistry Thermococcaceae - enzymology Thermococcales - enzymology |
title | A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synthetic%20genetic%20polymer%20with%20an%20uncharged%20backbone%20chemistry%20based%20on%20alkyl%20phosphonate%20nucleic%20acids&rft.jtitle=Nature%20chemistry&rft.au=Arangundy-Franklin,%20Sebastian&rft.date=2019-06-01&rft.volume=11&rft.issue=6&rft.spage=533&rft.epage=542&rft.pages=533-542&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0255-4&rft_dat=%3Cproquest_cross%3E2229623985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229623985&rft_id=info:pmid/31011171&rfr_iscdi=true |