A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids

The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all information...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2019-06, Vol.11 (6), p.533-542
Hauptverfasser: Arangundy-Franklin, Sebastian, Taylor, Alexander I., Porebski, Benjamin T., Genna, Vito, Peak-Chew, Sew, Vaisman, Alexandra, Woodgate, Roger, Orozco, Modesto, Holliger, Philipp
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 6
container_start_page 533
container_title Nature chemistry
container_volume 11
creator Arangundy-Franklin, Sebastian
Taylor, Alexander I.
Porebski, Benjamin T.
Genna, Vito
Peak-Chew, Sew
Vaisman, Alexandra
Woodgate, Roger
Orozco, Modesto
Holliger, Philipp
description The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules. The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.
doi_str_mv 10.1038/s41557-019-0255-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229623985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229623985</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EoqXwAFyQJc4Brx0n8bGq-JOQuMDZchynSZs4xU6E8va4pJQTh9WudmZnpQ-hayB3QFh272PgPI0IiIhQzqP4BM0h3Q8sFqfHmZEZuvB-Q0jCGSTnaMaAAEAKc1QvsR9tX5m-1nht7E_fdc3YGoe_6r7CyuLB6kq5tSlwrvQ276zBujJt7Xs3hpUPQmexarZjg3dV50NZ1RtsB92YkKd0XfhLdFaqxpurQ1-gj8eH99Vz9Pr29LJavkY65rSPUp0BZalKS12CKbnIMwGUlFQXmkKWiFjnXKREJ2XQY5YL4CwzJREQZwXJ2QLdTrk7130Oxvdy0w3OhpeSUioSykTGgwsml3ad986UcufqVrlRApF7uHKCKwNcuYcr43Bzc0ge8tYUx4tfmsFAJ4MPkl0b9_f6_9RvRfyFZw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229623985</pqid></control><display><type>article</type><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><source>MEDLINE</source><source>Nature</source><source>Springer Nature - Complete Springer Journals</source><creator>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</creator><creatorcontrib>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</creatorcontrib><description>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules. The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-019-0255-4</identifier><identifier>PMID: 31011171</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/92/552 ; 639/638/92/610 ; Analytical Chemistry ; Aptamers ; Aptamers, Nucleotide - chemistry ; Backbone ; Biochemistry ; Biological evolution ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Deoxyribonucleic acid ; Directed evolution ; Directed Molecular Evolution - methods ; DNA ; DNA - chemical synthesis ; DNA - chemistry ; DNA - genetics ; DNA biosynthesis ; DNA-Directed DNA Polymerase - chemistry ; DNA-Directed DNA Polymerase - genetics ; Enzymatic synthesis ; Exploration ; Inorganic Chemistry ; Mutation ; Nucleic Acid Conformation ; Nucleic acids ; Organic Chemistry ; Organophosphonates - chemical synthesis ; Organophosphonates - chemistry ; Phosphonates ; Physical Chemistry ; Physicochemical properties ; Polyelectrolytes ; Polymers ; Protein Engineering - methods ; Streptavidin ; Streptavidin - chemistry ; Thermococcaceae - enzymology ; Thermococcales - enzymology</subject><ispartof>Nature chemistry, 2019-06, Vol.11 (6), p.533-542</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</citedby><cites>FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</cites><orcidid>0000-0003-1398-0442 ; 0000-0002-3440-9854 ; 0000-0002-4664-8086</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41557-019-0255-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41557-019-0255-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31011171$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arangundy-Franklin, Sebastian</creatorcontrib><creatorcontrib>Taylor, Alexander I.</creatorcontrib><creatorcontrib>Porebski, Benjamin T.</creatorcontrib><creatorcontrib>Genna, Vito</creatorcontrib><creatorcontrib>Peak-Chew, Sew</creatorcontrib><creatorcontrib>Vaisman, Alexandra</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Holliger, Philipp</creatorcontrib><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules. The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</description><subject>631/92/552</subject><subject>639/638/92/610</subject><subject>Analytical Chemistry</subject><subject>Aptamers</subject><subject>Aptamers, Nucleotide - chemistry</subject><subject>Backbone</subject><subject>Biochemistry</subject><subject>Biological evolution</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Deoxyribonucleic acid</subject><subject>Directed evolution</subject><subject>Directed Molecular Evolution - methods</subject><subject>DNA</subject><subject>DNA - chemical synthesis</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA biosynthesis</subject><subject>DNA-Directed DNA Polymerase - chemistry</subject><subject>DNA-Directed DNA Polymerase - genetics</subject><subject>Enzymatic synthesis</subject><subject>Exploration</subject><subject>Inorganic Chemistry</subject><subject>Mutation</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Organic Chemistry</subject><subject>Organophosphonates - chemical synthesis</subject><subject>Organophosphonates - chemistry</subject><subject>Phosphonates</subject><subject>Physical Chemistry</subject><subject>Physicochemical properties</subject><subject>Polyelectrolytes</subject><subject>Polymers</subject><subject>Protein Engineering - methods</subject><subject>Streptavidin</subject><subject>Streptavidin - chemistry</subject><subject>Thermococcaceae - enzymology</subject><subject>Thermococcales - enzymology</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM1OwzAQhC0EoqXwAFyQJc4Brx0n8bGq-JOQuMDZchynSZs4xU6E8va4pJQTh9WudmZnpQ-hayB3QFh272PgPI0IiIhQzqP4BM0h3Q8sFqfHmZEZuvB-Q0jCGSTnaMaAAEAKc1QvsR9tX5m-1nht7E_fdc3YGoe_6r7CyuLB6kq5tSlwrvQ276zBujJt7Xs3hpUPQmexarZjg3dV50NZ1RtsB92YkKd0XfhLdFaqxpurQ1-gj8eH99Vz9Pr29LJavkY65rSPUp0BZalKS12CKbnIMwGUlFQXmkKWiFjnXKREJ2XQY5YL4CwzJREQZwXJ2QLdTrk7130Oxvdy0w3OhpeSUioSykTGgwsml3ad986UcufqVrlRApF7uHKCKwNcuYcr43Bzc0ge8tYUx4tfmsFAJ4MPkl0b9_f6_9RvRfyFZw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Arangundy-Franklin, Sebastian</creator><creator>Taylor, Alexander I.</creator><creator>Porebski, Benjamin T.</creator><creator>Genna, Vito</creator><creator>Peak-Chew, Sew</creator><creator>Vaisman, Alexandra</creator><creator>Woodgate, Roger</creator><creator>Orozco, Modesto</creator><creator>Holliger, Philipp</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-1398-0442</orcidid><orcidid>https://orcid.org/0000-0002-3440-9854</orcidid><orcidid>https://orcid.org/0000-0002-4664-8086</orcidid></search><sort><creationdate>20190601</creationdate><title>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</title><author>Arangundy-Franklin, Sebastian ; Taylor, Alexander I. ; Porebski, Benjamin T. ; Genna, Vito ; Peak-Chew, Sew ; Vaisman, Alexandra ; Woodgate, Roger ; Orozco, Modesto ; Holliger, Philipp</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-7c81237a7fcf1ef59b89120f2cdc218694cb5970c6ff1e43b91538ef09148d0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/92/552</topic><topic>639/638/92/610</topic><topic>Analytical Chemistry</topic><topic>Aptamers</topic><topic>Aptamers, Nucleotide - chemistry</topic><topic>Backbone</topic><topic>Biochemistry</topic><topic>Biological evolution</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Deoxyribonucleic acid</topic><topic>Directed evolution</topic><topic>Directed Molecular Evolution - methods</topic><topic>DNA</topic><topic>DNA - chemical synthesis</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA biosynthesis</topic><topic>DNA-Directed DNA Polymerase - chemistry</topic><topic>DNA-Directed DNA Polymerase - genetics</topic><topic>Enzymatic synthesis</topic><topic>Exploration</topic><topic>Inorganic Chemistry</topic><topic>Mutation</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Organic Chemistry</topic><topic>Organophosphonates - chemical synthesis</topic><topic>Organophosphonates - chemistry</topic><topic>Phosphonates</topic><topic>Physical Chemistry</topic><topic>Physicochemical properties</topic><topic>Polyelectrolytes</topic><topic>Polymers</topic><topic>Protein Engineering - methods</topic><topic>Streptavidin</topic><topic>Streptavidin - chemistry</topic><topic>Thermococcaceae - enzymology</topic><topic>Thermococcales - enzymology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arangundy-Franklin, Sebastian</creatorcontrib><creatorcontrib>Taylor, Alexander I.</creatorcontrib><creatorcontrib>Porebski, Benjamin T.</creatorcontrib><creatorcontrib>Genna, Vito</creatorcontrib><creatorcontrib>Peak-Chew, Sew</creatorcontrib><creatorcontrib>Vaisman, Alexandra</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Orozco, Modesto</creatorcontrib><creatorcontrib>Holliger, Philipp</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arangundy-Franklin, Sebastian</au><au>Taylor, Alexander I.</au><au>Porebski, Benjamin T.</au><au>Genna, Vito</au><au>Peak-Chew, Sew</au><au>Vaisman, Alexandra</au><au>Woodgate, Roger</au><au>Orozco, Modesto</au><au>Holliger, Philipp</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>6</issue><spage>533</spage><epage>542</epage><pages>533-542</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The physicochemical properties of nucleic acids are dominated by their highly charged phosphodiester backbone chemistry. This polyelectrolyte structure decouples information content (base sequence) from bulk properties, such as solubility, and has been proposed as a defining trait of all informational polymers. However, this conjecture has not been tested experimentally. Here, we describe the encoded synthesis of a genetic polymer with an uncharged backbone chemistry: alkyl phosphonate nucleic acids (phNAs) in which the canonical, negatively charged phosphodiester is replaced by an uncharged P-alkyl phosphonodiester backbone. Using synthetic chemistry and polymerase engineering, we describe the enzymatic, DNA-templated synthesis of P-methyl and P-ethyl phNAs, and the directed evolution of specific streptavidin-binding phNA aptamer ligands directly from random-sequence mixed P-methyl/P-ethyl phNA repertoires. Our results establish an example of the DNA-templated enzymatic synthesis and evolution of an uncharged genetic polymer and provide a foundational methodology for their exploration as a source of novel functional molecules. The highly charged phosphodiester chemistry of the natural nucleic acids DNA and RNA has been widely considered to be indispensable for their function as informational molecules. Now, synthetic genetic polymers with an uncharged alkyl phosphonate backbone chemistry have been shown to enable genetic information transfer and evolution.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>31011171</pmid><doi>10.1038/s41557-019-0255-4</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1398-0442</orcidid><orcidid>https://orcid.org/0000-0002-3440-9854</orcidid><orcidid>https://orcid.org/0000-0002-4664-8086</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2019-06, Vol.11 (6), p.533-542
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_journals_2229623985
source MEDLINE; Nature; Springer Nature - Complete Springer Journals
subjects 631/92/552
639/638/92/610
Analytical Chemistry
Aptamers
Aptamers, Nucleotide - chemistry
Backbone
Biochemistry
Biological evolution
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deoxyribonucleic acid
Directed evolution
Directed Molecular Evolution - methods
DNA
DNA - chemical synthesis
DNA - chemistry
DNA - genetics
DNA biosynthesis
DNA-Directed DNA Polymerase - chemistry
DNA-Directed DNA Polymerase - genetics
Enzymatic synthesis
Exploration
Inorganic Chemistry
Mutation
Nucleic Acid Conformation
Nucleic acids
Organic Chemistry
Organophosphonates - chemical synthesis
Organophosphonates - chemistry
Phosphonates
Physical Chemistry
Physicochemical properties
Polyelectrolytes
Polymers
Protein Engineering - methods
Streptavidin
Streptavidin - chemistry
Thermococcaceae - enzymology
Thermococcales - enzymology
title A synthetic genetic polymer with an uncharged backbone chemistry based on alkyl phosphonate nucleic acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A32%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20synthetic%20genetic%20polymer%20with%20an%20uncharged%20backbone%20chemistry%20based%20on%20alkyl%20phosphonate%20nucleic%20acids&rft.jtitle=Nature%20chemistry&rft.au=Arangundy-Franklin,%20Sebastian&rft.date=2019-06-01&rft.volume=11&rft.issue=6&rft.spage=533&rft.epage=542&rft.pages=533-542&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-019-0255-4&rft_dat=%3Cproquest_cross%3E2229623985%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229623985&rft_id=info:pmid/31011171&rfr_iscdi=true