Airborne microbial transport limitation to isolated Antarctic soil habitats

Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosyst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature microbiology 2019-06, Vol.4 (6), p.925-932
Hauptverfasser: Archer, Stephen D. J., Lee, Kevin C., Caruso, Tancredi, Maki, Teruya, Lee, Charles K., Cary, S. Craig, Cowan, Don A., Maestre, Fernando T., Pointing, Stephen B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 6
container_start_page 925
container_title Nature microbiology
container_volume 4
creator Archer, Stephen D. J.
Lee, Kevin C.
Caruso, Tancredi
Maki, Teruya
Lee, Charles K.
Cary, S. Craig
Cowan, Don A.
Maestre, Fernando T.
Pointing, Stephen B.
description Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change 4 . One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance 5 . Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns. Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.
doi_str_mv 10.1038/s41564-019-0370-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229266127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229266127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0Eoqj0A9ggS6wD40die1lVvEQlNrC2nMQBV0lcbHfB3-Mq5bFhNSPNmTuag9AFgWsCTN5ETsqKF0BUAUxAwY_QGYVSFiUV1fGffoYWMW4AgFS0qmR1imYMJGOCsjP0tHSh9mG0eHBN8LUzPU7BjHHrQ8K9G1wyyfkRJ49d9L1JtsXLMZnQJNfg6F2P3029p-I5OulMH-3iUOfo9e72ZfVQrJ_vH1fLddFwSVKhQNJG1ZKXRAnVUmkkIVDxztKOE2usol2piGisaFgnOwscKFimBG-ttITN0dWUuw3-Y2dj0hu_C2M-qSmlKj9JqMgUmaj8VozBdnob3GDCpyag9wb1ZFBng3pvUPO8c3lI3tWDbX82vn1lgE5AzKPxzYbf0_-nfgGzRXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229266127</pqid></control><display><type>article</type><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</creator><creatorcontrib>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</creatorcontrib><description>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change 4 . One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance 5 . Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns. Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0370-4</identifier><identifier>PMID: 30833723</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/171/1281 ; 631/326/193/2539 ; 631/326/2565/855 ; Air Microbiology ; Altitude ; Antarctic Regions ; Biodiversity ; Biomedical and Life Sciences ; Climate Change ; Dispersal ; Ecosystem ; Ecosystems ; Infectious Diseases ; Letter ; Life Sciences ; Medical Microbiology ; Microbiology ; Microbiota - genetics ; Parasitology ; Phylogeny ; Sequence Analysis, DNA ; Soil ; Soil Microbiology ; Virology</subject><ispartof>Nature microbiology, 2019-06, Vol.4 (6), p.925-932</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</citedby><cites>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</cites><orcidid>0000-0002-3607-9609 ; 0000-0002-6562-4733 ; 0000-0002-7547-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0370-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0370-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Archer, Stephen D. J.</creatorcontrib><creatorcontrib>Lee, Kevin C.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Maki, Teruya</creatorcontrib><creatorcontrib>Lee, Charles K.</creatorcontrib><creatorcontrib>Cary, S. Craig</creatorcontrib><creatorcontrib>Cowan, Don A.</creatorcontrib><creatorcontrib>Maestre, Fernando T.</creatorcontrib><creatorcontrib>Pointing, Stephen B.</creatorcontrib><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change 4 . One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance 5 . Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns. Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</description><subject>631/326/171/1281</subject><subject>631/326/193/2539</subject><subject>631/326/2565/855</subject><subject>Air Microbiology</subject><subject>Altitude</subject><subject>Antarctic Regions</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change</subject><subject>Dispersal</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Infectious Diseases</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Microbiota - genetics</subject><subject>Parasitology</subject><subject>Phylogeny</subject><subject>Sequence Analysis, DNA</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0Eoqj0A9ggS6wD40die1lVvEQlNrC2nMQBV0lcbHfB3-Mq5bFhNSPNmTuag9AFgWsCTN5ETsqKF0BUAUxAwY_QGYVSFiUV1fGffoYWMW4AgFS0qmR1imYMJGOCsjP0tHSh9mG0eHBN8LUzPU7BjHHrQ8K9G1wyyfkRJ49d9L1JtsXLMZnQJNfg6F2P3029p-I5OulMH-3iUOfo9e72ZfVQrJ_vH1fLddFwSVKhQNJG1ZKXRAnVUmkkIVDxztKOE2usol2piGisaFgnOwscKFimBG-ttITN0dWUuw3-Y2dj0hu_C2M-qSmlKj9JqMgUmaj8VozBdnob3GDCpyag9wb1ZFBng3pvUPO8c3lI3tWDbX82vn1lgE5AzKPxzYbf0_-nfgGzRXrw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Archer, Stephen D. J.</creator><creator>Lee, Kevin C.</creator><creator>Caruso, Tancredi</creator><creator>Maki, Teruya</creator><creator>Lee, Charles K.</creator><creator>Cary, S. Craig</creator><creator>Cowan, Don A.</creator><creator>Maestre, Fernando T.</creator><creator>Pointing, Stephen B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3607-9609</orcidid><orcidid>https://orcid.org/0000-0002-6562-4733</orcidid><orcidid>https://orcid.org/0000-0002-7547-7714</orcidid></search><sort><creationdate>20190601</creationdate><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><author>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/326/171/1281</topic><topic>631/326/193/2539</topic><topic>631/326/2565/855</topic><topic>Air Microbiology</topic><topic>Altitude</topic><topic>Antarctic Regions</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change</topic><topic>Dispersal</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Infectious Diseases</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Microbiota - genetics</topic><topic>Parasitology</topic><topic>Phylogeny</topic><topic>Sequence Analysis, DNA</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archer, Stephen D. J.</creatorcontrib><creatorcontrib>Lee, Kevin C.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Maki, Teruya</creatorcontrib><creatorcontrib>Lee, Charles K.</creatorcontrib><creatorcontrib>Cary, S. Craig</creatorcontrib><creatorcontrib>Cowan, Don A.</creatorcontrib><creatorcontrib>Maestre, Fernando T.</creatorcontrib><creatorcontrib>Pointing, Stephen B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archer, Stephen D. J.</au><au>Lee, Kevin C.</au><au>Caruso, Tancredi</au><au>Maki, Teruya</au><au>Lee, Charles K.</au><au>Cary, S. Craig</au><au>Cowan, Don A.</au><au>Maestre, Fernando T.</au><au>Pointing, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airborne microbial transport limitation to isolated Antarctic soil habitats</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>6</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change 4 . One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance 5 . Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns. Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30833723</pmid><doi>10.1038/s41564-019-0370-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3607-9609</orcidid><orcidid>https://orcid.org/0000-0002-6562-4733</orcidid><orcidid>https://orcid.org/0000-0002-7547-7714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2058-5276
ispartof Nature microbiology, 2019-06, Vol.4 (6), p.925-932
issn 2058-5276
2058-5276
language eng
recordid cdi_proquest_journals_2229266127
source MEDLINE; SpringerLink Journals
subjects 631/326/171/1281
631/326/193/2539
631/326/2565/855
Air Microbiology
Altitude
Antarctic Regions
Biodiversity
Biomedical and Life Sciences
Climate Change
Dispersal
Ecosystem
Ecosystems
Infectious Diseases
Letter
Life Sciences
Medical Microbiology
Microbiology
Microbiota - genetics
Parasitology
Phylogeny
Sequence Analysis, DNA
Soil
Soil Microbiology
Virology
title Airborne microbial transport limitation to isolated Antarctic soil habitats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airborne%20microbial%20transport%20limitation%20to%20isolated%20Antarctic%20soil%20habitats&rft.jtitle=Nature%20microbiology&rft.au=Archer,%20Stephen%20D.%20J.&rft.date=2019-06-01&rft.volume=4&rft.issue=6&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0370-4&rft_dat=%3Cproquest_cross%3E2229266127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229266127&rft_id=info:pmid/30833723&rfr_iscdi=true