Airborne microbial transport limitation to isolated Antarctic soil habitats
Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities 1 . Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes 2 , 3 , and extra-range dispersal has important implications for predicting ecosyst...
Gespeichert in:
Veröffentlicht in: | Nature microbiology 2019-06, Vol.4 (6), p.925-932 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 932 |
---|---|
container_issue | 6 |
container_start_page | 925 |
container_title | Nature microbiology |
container_volume | 4 |
creator | Archer, Stephen D. J. Lee, Kevin C. Caruso, Tancredi Maki, Teruya Lee, Charles K. Cary, S. Craig Cowan, Don A. Maestre, Fernando T. Pointing, Stephen B. |
description | Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities
1
. Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes
2
,
3
, and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change
4
. One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance
5
. Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns.
Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region. |
doi_str_mv | 10.1038/s41564-019-0370-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229266127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229266127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0Eoqj0A9ggS6wD40die1lVvEQlNrC2nMQBV0lcbHfB3-Mq5bFhNSPNmTuag9AFgWsCTN5ETsqKF0BUAUxAwY_QGYVSFiUV1fGffoYWMW4AgFS0qmR1imYMJGOCsjP0tHSh9mG0eHBN8LUzPU7BjHHrQ8K9G1wyyfkRJ49d9L1JtsXLMZnQJNfg6F2P3029p-I5OulMH-3iUOfo9e72ZfVQrJ_vH1fLddFwSVKhQNJG1ZKXRAnVUmkkIVDxztKOE2usol2piGisaFgnOwscKFimBG-ttITN0dWUuw3-Y2dj0hu_C2M-qSmlKj9JqMgUmaj8VozBdnob3GDCpyag9wb1ZFBng3pvUPO8c3lI3tWDbX82vn1lgE5AzKPxzYbf0_-nfgGzRXrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229266127</pqid></control><display><type>article</type><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</creator><creatorcontrib>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</creatorcontrib><description>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities
1
. Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes
2
,
3
, and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change
4
. One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance
5
. Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns.
Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</description><identifier>ISSN: 2058-5276</identifier><identifier>EISSN: 2058-5276</identifier><identifier>DOI: 10.1038/s41564-019-0370-4</identifier><identifier>PMID: 30833723</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/326/171/1281 ; 631/326/193/2539 ; 631/326/2565/855 ; Air Microbiology ; Altitude ; Antarctic Regions ; Biodiversity ; Biomedical and Life Sciences ; Climate Change ; Dispersal ; Ecosystem ; Ecosystems ; Infectious Diseases ; Letter ; Life Sciences ; Medical Microbiology ; Microbiology ; Microbiota - genetics ; Parasitology ; Phylogeny ; Sequence Analysis, DNA ; Soil ; Soil Microbiology ; Virology</subject><ispartof>Nature microbiology, 2019-06, Vol.4 (6), p.925-932</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</citedby><cites>FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</cites><orcidid>0000-0002-3607-9609 ; 0000-0002-6562-4733 ; 0000-0002-7547-7714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41564-019-0370-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41564-019-0370-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30833723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Archer, Stephen D. J.</creatorcontrib><creatorcontrib>Lee, Kevin C.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Maki, Teruya</creatorcontrib><creatorcontrib>Lee, Charles K.</creatorcontrib><creatorcontrib>Cary, S. Craig</creatorcontrib><creatorcontrib>Cowan, Don A.</creatorcontrib><creatorcontrib>Maestre, Fernando T.</creatorcontrib><creatorcontrib>Pointing, Stephen B.</creatorcontrib><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><title>Nature microbiology</title><addtitle>Nat Microbiol</addtitle><addtitle>Nat Microbiol</addtitle><description>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities
1
. Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes
2
,
3
, and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change
4
. One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance
5
. Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns.
Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</description><subject>631/326/171/1281</subject><subject>631/326/193/2539</subject><subject>631/326/2565/855</subject><subject>Air Microbiology</subject><subject>Altitude</subject><subject>Antarctic Regions</subject><subject>Biodiversity</subject><subject>Biomedical and Life Sciences</subject><subject>Climate Change</subject><subject>Dispersal</subject><subject>Ecosystem</subject><subject>Ecosystems</subject><subject>Infectious Diseases</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Microbiota - genetics</subject><subject>Parasitology</subject><subject>Phylogeny</subject><subject>Sequence Analysis, DNA</subject><subject>Soil</subject><subject>Soil Microbiology</subject><subject>Virology</subject><issn>2058-5276</issn><issn>2058-5276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0Eoqj0A9ggS6wD40die1lVvEQlNrC2nMQBV0lcbHfB3-Mq5bFhNSPNmTuag9AFgWsCTN5ETsqKF0BUAUxAwY_QGYVSFiUV1fGffoYWMW4AgFS0qmR1imYMJGOCsjP0tHSh9mG0eHBN8LUzPU7BjHHrQ8K9G1wyyfkRJ49d9L1JtsXLMZnQJNfg6F2P3029p-I5OulMH-3iUOfo9e72ZfVQrJ_vH1fLddFwSVKhQNJG1ZKXRAnVUmkkIVDxztKOE2usol2piGisaFgnOwscKFimBG-ttITN0dWUuw3-Y2dj0hu_C2M-qSmlKj9JqMgUmaj8VozBdnob3GDCpyag9wb1ZFBng3pvUPO8c3lI3tWDbX82vn1lgE5AzKPxzYbf0_-nfgGzRXrw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Archer, Stephen D. J.</creator><creator>Lee, Kevin C.</creator><creator>Caruso, Tancredi</creator><creator>Maki, Teruya</creator><creator>Lee, Charles K.</creator><creator>Cary, S. Craig</creator><creator>Cowan, Don A.</creator><creator>Maestre, Fernando T.</creator><creator>Pointing, Stephen B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3607-9609</orcidid><orcidid>https://orcid.org/0000-0002-6562-4733</orcidid><orcidid>https://orcid.org/0000-0002-7547-7714</orcidid></search><sort><creationdate>20190601</creationdate><title>Airborne microbial transport limitation to isolated Antarctic soil habitats</title><author>Archer, Stephen D. J. ; Lee, Kevin C. ; Caruso, Tancredi ; Maki, Teruya ; Lee, Charles K. ; Cary, S. Craig ; Cowan, Don A. ; Maestre, Fernando T. ; Pointing, Stephen B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-9082c9b8451979d28a811064fe2f41eae92f5917ce7c3f8fe04020e3974de8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>631/326/171/1281</topic><topic>631/326/193/2539</topic><topic>631/326/2565/855</topic><topic>Air Microbiology</topic><topic>Altitude</topic><topic>Antarctic Regions</topic><topic>Biodiversity</topic><topic>Biomedical and Life Sciences</topic><topic>Climate Change</topic><topic>Dispersal</topic><topic>Ecosystem</topic><topic>Ecosystems</topic><topic>Infectious Diseases</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Microbiota - genetics</topic><topic>Parasitology</topic><topic>Phylogeny</topic><topic>Sequence Analysis, DNA</topic><topic>Soil</topic><topic>Soil Microbiology</topic><topic>Virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Archer, Stephen D. J.</creatorcontrib><creatorcontrib>Lee, Kevin C.</creatorcontrib><creatorcontrib>Caruso, Tancredi</creatorcontrib><creatorcontrib>Maki, Teruya</creatorcontrib><creatorcontrib>Lee, Charles K.</creatorcontrib><creatorcontrib>Cary, S. Craig</creatorcontrib><creatorcontrib>Cowan, Don A.</creatorcontrib><creatorcontrib>Maestre, Fernando T.</creatorcontrib><creatorcontrib>Pointing, Stephen B.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Nature microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Archer, Stephen D. J.</au><au>Lee, Kevin C.</au><au>Caruso, Tancredi</au><au>Maki, Teruya</au><au>Lee, Charles K.</au><au>Cary, S. Craig</au><au>Cowan, Don A.</au><au>Maestre, Fernando T.</au><au>Pointing, Stephen B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Airborne microbial transport limitation to isolated Antarctic soil habitats</atitle><jtitle>Nature microbiology</jtitle><stitle>Nat Microbiol</stitle><addtitle>Nat Microbiol</addtitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>6</issue><spage>925</spage><epage>932</epage><pages>925-932</pages><issn>2058-5276</issn><eissn>2058-5276</eissn><abstract>Dispersal is a critical yet poorly understood factor underlying macroecological patterns in microbial communities
1
. Airborne microbial transport is assumed to occupy a central role in determining dispersal outcomes
2
,
3
, and extra-range dispersal has important implications for predicting ecosystem resilience and response to environmental change
4
. One of the most pertinent biomes in this regard is Antarctica, given its geographic isolation and vulnerability to climate change and human disturbance
5
. Here, we report microbial diversity in near-ground and high-altitude air above the largest ice-free Antarctic habitat, as well as that of underlying soil microbial communities. We found that persistent local airborne inputs were unable to fully explain Antarctic soil community assembly. Comparison with airborne microbial diversity from high-altitude and non-polar sources suggests that strong selection occurs during long-range atmospheric transport. The influence of selection during airborne transit and at sink locations varied between microbial phyla. Overall, the communities from this isolated Antarctic ecosystem displayed limited connectivity to the non-polar microbial pool, and alternative sources of recruitment are necessary to fully explain extant soil diversity. Our findings provide critical insights into the role of airborne transport limitation in determining microbial biogeographic patterns.
Characterization of air and soil microbial communities above and within an Antarctic valley revealed that airborne inputs to the system cannot fully explain local soil diversity and that fungi were sourced from a larger regional pool compared to bacteria, indicating limited microbial dispersal in this region.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>30833723</pmid><doi>10.1038/s41564-019-0370-4</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3607-9609</orcidid><orcidid>https://orcid.org/0000-0002-6562-4733</orcidid><orcidid>https://orcid.org/0000-0002-7547-7714</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2058-5276 |
ispartof | Nature microbiology, 2019-06, Vol.4 (6), p.925-932 |
issn | 2058-5276 2058-5276 |
language | eng |
recordid | cdi_proquest_journals_2229266127 |
source | MEDLINE; SpringerLink Journals |
subjects | 631/326/171/1281 631/326/193/2539 631/326/2565/855 Air Microbiology Altitude Antarctic Regions Biodiversity Biomedical and Life Sciences Climate Change Dispersal Ecosystem Ecosystems Infectious Diseases Letter Life Sciences Medical Microbiology Microbiology Microbiota - genetics Parasitology Phylogeny Sequence Analysis, DNA Soil Soil Microbiology Virology |
title | Airborne microbial transport limitation to isolated Antarctic soil habitats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T04%3A36%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Airborne%20microbial%20transport%20limitation%20to%20isolated%20Antarctic%20soil%20habitats&rft.jtitle=Nature%20microbiology&rft.au=Archer,%20Stephen%20D.%20J.&rft.date=2019-06-01&rft.volume=4&rft.issue=6&rft.spage=925&rft.epage=932&rft.pages=925-932&rft.issn=2058-5276&rft.eissn=2058-5276&rft_id=info:doi/10.1038/s41564-019-0370-4&rft_dat=%3Cproquest_cross%3E2229266127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229266127&rft_id=info:pmid/30833723&rfr_iscdi=true |