Simulation of Particle Scattering at Amorphous and Polycrystalline Targets
A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydro...
Gespeichert in:
Veröffentlicht in: | Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 338 |
---|---|
container_issue | 2 |
container_start_page | 335 |
container_title | Surface investigation, x-ray, synchrotron and neutron techniques |
container_volume | 13 |
creator | Meluzova, D. S. Babenko, P. Yu Shergin, A. P. Zinoviev, A. N. |
description | A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared. |
doi_str_mv | 10.1134/S1027451019020332 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229253605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229253605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whuns2yFJ8ULExdD2kmqVOmkzHJLPrvnVLBhbi6F875zuUehG6B3AMw_lACoYoLIKAJJYzRMzSBGehCEc3Px32Ui6N-ia5S2hEiFBNygt7KZj-0Jjehw8HjlYm5sa3DpTU5u9h0W2wynu9D7D_DkLDparwK7cHGQ8qmbZvO4bWJW5fTNbrwpk3u5mdO0cfT43rxUizfn18X82VhGchcCHBGWsacqrmgM-GE4FzTzcZ6JrQHPaPOMQ-89s6DtErV0kovlNZEUq3YFN2dcvsYvgaXcrULQ-zGkxWlVFPBJBGjC04uG0NK0fmqj83exEMFpDpWVv2pbGToiUn98XMXf5P_h74BvH1szw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229253605</pqid></control><display><type>article</type><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</creator><creatorcontrib>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</creatorcontrib><description>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</description><identifier>ISSN: 1027-4510</identifier><identifier>EISSN: 1819-7094</identifier><identifier>DOI: 10.1134/S1027451019020332</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Inelastic scattering ; Materials Science ; Polycrystals ; Simulation ; Surfaces and Interfaces ; Thin Films ; Tungsten</subject><ispartof>Surface investigation, x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</citedby><cites>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1027451019020332$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1027451019020332$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Meluzova, D. S.</creatorcontrib><creatorcontrib>Babenko, P. Yu</creatorcontrib><creatorcontrib>Shergin, A. P.</creatorcontrib><creatorcontrib>Zinoviev, A. N.</creatorcontrib><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><title>Surface investigation, x-ray, synchrotron and neutron techniques</title><addtitle>J. Synch. Investig</addtitle><description>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</description><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Inelastic scattering</subject><subject>Materials Science</subject><subject>Polycrystals</subject><subject>Simulation</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tungsten</subject><issn>1027-4510</issn><issn>1819-7094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whuns2yFJ8ULExdD2kmqVOmkzHJLPrvnVLBhbi6F875zuUehG6B3AMw_lACoYoLIKAJJYzRMzSBGehCEc3Px32Ui6N-ia5S2hEiFBNygt7KZj-0Jjehw8HjlYm5sa3DpTU5u9h0W2wynu9D7D_DkLDparwK7cHGQ8qmbZvO4bWJW5fTNbrwpk3u5mdO0cfT43rxUizfn18X82VhGchcCHBGWsacqrmgM-GE4FzTzcZ6JrQHPaPOMQ-89s6DtErV0kovlNZEUq3YFN2dcvsYvgaXcrULQ-zGkxWlVFPBJBGjC04uG0NK0fmqj83exEMFpDpWVv2pbGToiUn98XMXf5P_h74BvH1szw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Meluzova, D. S.</creator><creator>Babenko, P. Yu</creator><creator>Shergin, A. P.</creator><creator>Zinoviev, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><author>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Inelastic scattering</topic><topic>Materials Science</topic><topic>Polycrystals</topic><topic>Simulation</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meluzova, D. S.</creatorcontrib><creatorcontrib>Babenko, P. Yu</creatorcontrib><creatorcontrib>Shergin, A. P.</creatorcontrib><creatorcontrib>Zinoviev, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meluzova, D. S.</au><au>Babenko, P. Yu</au><au>Shergin, A. P.</au><au>Zinoviev, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</atitle><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle><stitle>J. Synch. Investig</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>335</spage><epage>338</epage><pages>335-338</pages><issn>1027-4510</issn><eissn>1819-7094</eissn><abstract>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1027451019020332</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1027-4510 |
ispartof | Surface investigation, x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338 |
issn | 1027-4510 1819-7094 |
language | eng |
recordid | cdi_proquest_journals_2229253605 |
source | SpringerLink Journals - AutoHoldings |
subjects | Chemistry and Materials Science Crystal structure Crystallinity Inelastic scattering Materials Science Polycrystals Simulation Surfaces and Interfaces Thin Films Tungsten |
title | Simulation of Particle Scattering at Amorphous and Polycrystalline Targets |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Particle%20Scattering%20at%20Amorphous%20and%20Polycrystalline%20Targets&rft.jtitle=Surface%20investigation,%20x-ray,%20synchrotron%20and%20neutron%20techniques&rft.au=Meluzova,%20D.%20S.&rft.date=2019-03-01&rft.volume=13&rft.issue=2&rft.spage=335&rft.epage=338&rft.pages=335-338&rft.issn=1027-4510&rft.eissn=1819-7094&rft_id=info:doi/10.1134/S1027451019020332&rft_dat=%3Cproquest_cross%3E2229253605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229253605&rft_id=info:pmid/&rfr_iscdi=true |