Simulation of Particle Scattering at Amorphous and Polycrystalline Targets

A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface investigation, x-ray, synchrotron and neutron techniques x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338
Hauptverfasser: Meluzova, D. S., Babenko, P. Yu, Shergin, A. P., Zinoviev, A. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 338
container_issue 2
container_start_page 335
container_title Surface investigation, x-ray, synchrotron and neutron techniques
container_volume 13
creator Meluzova, D. S.
Babenko, P. Yu
Shergin, A. P.
Zinoviev, A. N.
description A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.
doi_str_mv 10.1134/S1027451019020332
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2229253605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229253605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whuns2yFJ8ULExdD2kmqVOmkzHJLPrvnVLBhbi6F875zuUehG6B3AMw_lACoYoLIKAJJYzRMzSBGehCEc3Px32Ui6N-ia5S2hEiFBNygt7KZj-0Jjehw8HjlYm5sa3DpTU5u9h0W2wynu9D7D_DkLDparwK7cHGQ8qmbZvO4bWJW5fTNbrwpk3u5mdO0cfT43rxUizfn18X82VhGchcCHBGWsacqrmgM-GE4FzTzcZ6JrQHPaPOMQ-89s6DtErV0kovlNZEUq3YFN2dcvsYvgaXcrULQ-zGkxWlVFPBJBGjC04uG0NK0fmqj83exEMFpDpWVv2pbGToiUn98XMXf5P_h74BvH1szw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229253605</pqid></control><display><type>article</type><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><source>SpringerLink Journals - AutoHoldings</source><creator>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</creator><creatorcontrib>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</creatorcontrib><description>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</description><identifier>ISSN: 1027-4510</identifier><identifier>EISSN: 1819-7094</identifier><identifier>DOI: 10.1134/S1027451019020332</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Chemistry and Materials Science ; Crystal structure ; Crystallinity ; Inelastic scattering ; Materials Science ; Polycrystals ; Simulation ; Surfaces and Interfaces ; Thin Films ; Tungsten</subject><ispartof>Surface investigation, x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</citedby><cites>FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1027451019020332$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1027451019020332$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Meluzova, D. S.</creatorcontrib><creatorcontrib>Babenko, P. Yu</creatorcontrib><creatorcontrib>Shergin, A. P.</creatorcontrib><creatorcontrib>Zinoviev, A. N.</creatorcontrib><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><title>Surface investigation, x-ray, synchrotron and neutron techniques</title><addtitle>J. Synch. Investig</addtitle><description>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</description><subject>Chemistry and Materials Science</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Inelastic scattering</subject><subject>Materials Science</subject><subject>Polycrystals</subject><subject>Simulation</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tungsten</subject><issn>1027-4510</issn><issn>1819-7094</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whuns2yFJ8ULExdD2kmqVOmkzHJLPrvnVLBhbi6F875zuUehG6B3AMw_lACoYoLIKAJJYzRMzSBGehCEc3Px32Ui6N-ia5S2hEiFBNygt7KZj-0Jjehw8HjlYm5sa3DpTU5u9h0W2wynu9D7D_DkLDparwK7cHGQ8qmbZvO4bWJW5fTNbrwpk3u5mdO0cfT43rxUizfn18X82VhGchcCHBGWsacqrmgM-GE4FzTzcZ6JrQHPaPOMQ-89s6DtErV0kovlNZEUq3YFN2dcvsYvgaXcrULQ-zGkxWlVFPBJBGjC04uG0NK0fmqj83exEMFpDpWVv2pbGToiUn98XMXf5P_h74BvH1szw</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Meluzova, D. S.</creator><creator>Babenko, P. Yu</creator><creator>Shergin, A. P.</creator><creator>Zinoviev, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190301</creationdate><title>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</title><author>Meluzova, D. S. ; Babenko, P. Yu ; Shergin, A. P. ; Zinoviev, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-51ea6c33e7d45285e554492bbcf359f1982ee3f14dfef16c77d6c6f5799062973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chemistry and Materials Science</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Inelastic scattering</topic><topic>Materials Science</topic><topic>Polycrystals</topic><topic>Simulation</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meluzova, D. S.</creatorcontrib><creatorcontrib>Babenko, P. Yu</creatorcontrib><creatorcontrib>Shergin, A. P.</creatorcontrib><creatorcontrib>Zinoviev, A. N.</creatorcontrib><collection>CrossRef</collection><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meluzova, D. S.</au><au>Babenko, P. Yu</au><au>Shergin, A. P.</au><au>Zinoviev, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of Particle Scattering at Amorphous and Polycrystalline Targets</atitle><jtitle>Surface investigation, x-ray, synchrotron and neutron techniques</jtitle><stitle>J. Synch. Investig</stitle><date>2019-03-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>335</spage><epage>338</epage><pages>335-338</pages><issn>1027-4510</issn><eissn>1819-7094</eissn><abstract>A procedure for simulating the scattering of atomic particles at amorphous and crystalline targets is described in the binary collision approximation. The influence of thermal vibrations, choice of the potential, and the inclusion of inelastic energy losses are analyzed using the simulation of hydrogen-atom scattering at a tungsten surface as an example. The coefficients of reflection from crystalline, polycrystalline, and amorphous surfaces are compared.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1027451019020332</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1027-4510
ispartof Surface investigation, x-ray, synchrotron and neutron techniques, 2019-03, Vol.13 (2), p.335-338
issn 1027-4510
1819-7094
language eng
recordid cdi_proquest_journals_2229253605
source SpringerLink Journals - AutoHoldings
subjects Chemistry and Materials Science
Crystal structure
Crystallinity
Inelastic scattering
Materials Science
Polycrystals
Simulation
Surfaces and Interfaces
Thin Films
Tungsten
title Simulation of Particle Scattering at Amorphous and Polycrystalline Targets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20Particle%20Scattering%20at%20Amorphous%20and%20Polycrystalline%20Targets&rft.jtitle=Surface%20investigation,%20x-ray,%20synchrotron%20and%20neutron%20techniques&rft.au=Meluzova,%20D.%20S.&rft.date=2019-03-01&rft.volume=13&rft.issue=2&rft.spage=335&rft.epage=338&rft.pages=335-338&rft.issn=1027-4510&rft.eissn=1819-7094&rft_id=info:doi/10.1134/S1027451019020332&rft_dat=%3Cproquest_cross%3E2229253605%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229253605&rft_id=info:pmid/&rfr_iscdi=true