Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon

Two stage electron irradiation with thermal heat‐treatments after each stage is used for vacancy‐oxygen‐related defect engineering in Czochralski‐grown silicon (Cz‐Si). The Cz‐Si samples are first irradiated at room temperature with 2.5 MeV electrons and then heat‐treated at 320 °C to anneal out the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica status solidi. A, Applications and materials science Applications and materials science, 2019-05, Vol.216 (10), p.n/a
Hauptverfasser: Murin, Leonid I., Tolkacheva, Ekaterina A., Lastovskii, Stanislau B., Markevich, Vladimir P., Mullins, Jack, Peaker, Anthony R., Svensson, Bengt G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 10
container_start_page
container_title Physica status solidi. A, Applications and materials science
container_volume 216
creator Murin, Leonid I.
Tolkacheva, Ekaterina A.
Lastovskii, Stanislau B.
Markevich, Vladimir P.
Mullins, Jack
Peaker, Anthony R.
Svensson, Bengt G.
description Two stage electron irradiation with thermal heat‐treatments after each stage is used for vacancy‐oxygen‐related defect engineering in Czochralski‐grown silicon (Cz‐Si). The Cz‐Si samples are first irradiated at room temperature with 2.5 MeV electrons and then heat‐treated at 320 °C to anneal out the VO, V2O, and V3O centers and generate the VO2, V2O2, and V3O2 complexes as the dominant vacancy‐oxygen‐related defects. Subsequently, the samples are irradiated at room temperature again and subjected to 30‐min isochronal annealing in the temperature range 75–350 °C. Defect evolution upon the treatments is monitored by means of the local vibrational mode (LVM) absorption spectroscopy. From an analysis of changes in intensity of the LVM lines it is revealed that the second irradiation results in a noticeable decrease in the concentrations of the VO2, V2O2, and V3O2 complexes and an increase in the concentrations of the oxygen dimer and the VO2* defect (metastable state of VO2, which consists of the VO and Oi components). The observed defect transformations are argued to be related to interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*. The formation of the VO2* and O2i complexes in Czochralski‐grown silicon is promoted by two stage electron irradiation at room temperature with a heat‐treatment between the stages. The enhanced formation of these defects is caused by the interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*.
doi_str_mv 10.1002/pssa.201800609
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2229044547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2229044547</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2739-570a626f1766e67fa5e5bdfdefde1c963cfef346e550458ddaedd2cc06ecf6d93</originalsourceid><addsrcrecordid>eNo9kM9KAzEQxoMoWKtXzwEvetiaZHez3WOp_wqFSld7DTGZaMo2WzcpdQ-Cj-Az-iTuWikMzHzMNzPMD6FzSgaUEHa99l4OGKFDQjjJD1CPDjmLeEzzw31NyDE68X5JSJImGe2hz4kLUEsVbOVwZfBcais78fP1PXF6o0DjAkrzJ1unDzZYWXq8teENL6SSTjVtc_bRvILDcyhlaEduwIAKHi_cjOFLh01drTDFocLxFbYOF7a0qnKn6Mi0y-DsP_fR893t0_ghms7uJ-PRNFqzLM6jNCOSM25oxjnwzMgU0hdtNLRBVc5jZcDECYc0bf8aai1Ba6YU4aAM13ncRxe7veu6et-AD2JZbWrXnhSMsZwkHY3Wle9cW1tCI9a1Xcm6EZSIjq_o-Io9X_FYFKO9in8Bm4t1pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2229044547</pqid></control><display><type>article</type><title>Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Murin, Leonid I. ; Tolkacheva, Ekaterina A. ; Lastovskii, Stanislau B. ; Markevich, Vladimir P. ; Mullins, Jack ; Peaker, Anthony R. ; Svensson, Bengt G.</creator><creatorcontrib>Murin, Leonid I. ; Tolkacheva, Ekaterina A. ; Lastovskii, Stanislau B. ; Markevich, Vladimir P. ; Mullins, Jack ; Peaker, Anthony R. ; Svensson, Bengt G.</creatorcontrib><description>Two stage electron irradiation with thermal heat‐treatments after each stage is used for vacancy‐oxygen‐related defect engineering in Czochralski‐grown silicon (Cz‐Si). The Cz‐Si samples are first irradiated at room temperature with 2.5 MeV electrons and then heat‐treated at 320 °C to anneal out the VO, V2O, and V3O centers and generate the VO2, V2O2, and V3O2 complexes as the dominant vacancy‐oxygen‐related defects. Subsequently, the samples are irradiated at room temperature again and subjected to 30‐min isochronal annealing in the temperature range 75–350 °C. Defect evolution upon the treatments is monitored by means of the local vibrational mode (LVM) absorption spectroscopy. From an analysis of changes in intensity of the LVM lines it is revealed that the second irradiation results in a noticeable decrease in the concentrations of the VO2, V2O2, and V3O2 complexes and an increase in the concentrations of the oxygen dimer and the VO2* defect (metastable state of VO2, which consists of the VO and Oi components). The observed defect transformations are argued to be related to interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*. The formation of the VO2* and O2i complexes in Czochralski‐grown silicon is promoted by two stage electron irradiation at room temperature with a heat‐treatment between the stages. The enhanced formation of these defects is caused by the interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201800609</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Annealing ; Defects ; Dimers ; Electron irradiation ; Interstitials ; local vibrational modes ; Metastable state ; Oxygen ; self‐interstitials ; Silicon ; Vacancies ; vacancy‐oxygen defects ; Vanadium oxides ; Vibration monitoring</subject><ispartof>Physica status solidi. A, Applications and materials science, 2019-05, Vol.216 (10), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2019 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssa.201800609$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssa.201800609$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27911,27912,45561,45562</link.rule.ids></links><search><creatorcontrib>Murin, Leonid I.</creatorcontrib><creatorcontrib>Tolkacheva, Ekaterina A.</creatorcontrib><creatorcontrib>Lastovskii, Stanislau B.</creatorcontrib><creatorcontrib>Markevich, Vladimir P.</creatorcontrib><creatorcontrib>Mullins, Jack</creatorcontrib><creatorcontrib>Peaker, Anthony R.</creatorcontrib><creatorcontrib>Svensson, Bengt G.</creatorcontrib><title>Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon</title><title>Physica status solidi. A, Applications and materials science</title><description>Two stage electron irradiation with thermal heat‐treatments after each stage is used for vacancy‐oxygen‐related defect engineering in Czochralski‐grown silicon (Cz‐Si). The Cz‐Si samples are first irradiated at room temperature with 2.5 MeV electrons and then heat‐treated at 320 °C to anneal out the VO, V2O, and V3O centers and generate the VO2, V2O2, and V3O2 complexes as the dominant vacancy‐oxygen‐related defects. Subsequently, the samples are irradiated at room temperature again and subjected to 30‐min isochronal annealing in the temperature range 75–350 °C. Defect evolution upon the treatments is monitored by means of the local vibrational mode (LVM) absorption spectroscopy. From an analysis of changes in intensity of the LVM lines it is revealed that the second irradiation results in a noticeable decrease in the concentrations of the VO2, V2O2, and V3O2 complexes and an increase in the concentrations of the oxygen dimer and the VO2* defect (metastable state of VO2, which consists of the VO and Oi components). The observed defect transformations are argued to be related to interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*. The formation of the VO2* and O2i complexes in Czochralski‐grown silicon is promoted by two stage electron irradiation at room temperature with a heat‐treatment between the stages. The enhanced formation of these defects is caused by the interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*.</description><subject>Annealing</subject><subject>Defects</subject><subject>Dimers</subject><subject>Electron irradiation</subject><subject>Interstitials</subject><subject>local vibrational modes</subject><subject>Metastable state</subject><subject>Oxygen</subject><subject>self‐interstitials</subject><subject>Silicon</subject><subject>Vacancies</subject><subject>vacancy‐oxygen defects</subject><subject>Vanadium oxides</subject><subject>Vibration monitoring</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM9KAzEQxoMoWKtXzwEvetiaZHez3WOp_wqFSld7DTGZaMo2WzcpdQ-Cj-Az-iTuWikMzHzMNzPMD6FzSgaUEHa99l4OGKFDQjjJD1CPDjmLeEzzw31NyDE68X5JSJImGe2hz4kLUEsVbOVwZfBcais78fP1PXF6o0DjAkrzJ1unDzZYWXq8teENL6SSTjVtc_bRvILDcyhlaEduwIAKHi_cjOFLh01drTDFocLxFbYOF7a0qnKn6Mi0y-DsP_fR893t0_ghms7uJ-PRNFqzLM6jNCOSM25oxjnwzMgU0hdtNLRBVc5jZcDECYc0bf8aai1Ba6YU4aAM13ncRxe7veu6et-AD2JZbWrXnhSMsZwkHY3Wle9cW1tCI9a1Xcm6EZSIjq_o-Io9X_FYFKO9in8Bm4t1pA</recordid><startdate>20190522</startdate><enddate>20190522</enddate><creator>Murin, Leonid I.</creator><creator>Tolkacheva, Ekaterina A.</creator><creator>Lastovskii, Stanislau B.</creator><creator>Markevich, Vladimir P.</creator><creator>Mullins, Jack</creator><creator>Peaker, Anthony R.</creator><creator>Svensson, Bengt G.</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20190522</creationdate><title>Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon</title><author>Murin, Leonid I. ; Tolkacheva, Ekaterina A. ; Lastovskii, Stanislau B. ; Markevich, Vladimir P. ; Mullins, Jack ; Peaker, Anthony R. ; Svensson, Bengt G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2739-570a626f1766e67fa5e5bdfdefde1c963cfef346e550458ddaedd2cc06ecf6d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Defects</topic><topic>Dimers</topic><topic>Electron irradiation</topic><topic>Interstitials</topic><topic>local vibrational modes</topic><topic>Metastable state</topic><topic>Oxygen</topic><topic>self‐interstitials</topic><topic>Silicon</topic><topic>Vacancies</topic><topic>vacancy‐oxygen defects</topic><topic>Vanadium oxides</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murin, Leonid I.</creatorcontrib><creatorcontrib>Tolkacheva, Ekaterina A.</creatorcontrib><creatorcontrib>Lastovskii, Stanislau B.</creatorcontrib><creatorcontrib>Markevich, Vladimir P.</creatorcontrib><creatorcontrib>Mullins, Jack</creatorcontrib><creatorcontrib>Peaker, Anthony R.</creatorcontrib><creatorcontrib>Svensson, Bengt G.</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murin, Leonid I.</au><au>Tolkacheva, Ekaterina A.</au><au>Lastovskii, Stanislau B.</au><au>Markevich, Vladimir P.</au><au>Mullins, Jack</au><au>Peaker, Anthony R.</au><au>Svensson, Bengt G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><date>2019-05-22</date><risdate>2019</risdate><volume>216</volume><issue>10</issue><epage>n/a</epage><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Two stage electron irradiation with thermal heat‐treatments after each stage is used for vacancy‐oxygen‐related defect engineering in Czochralski‐grown silicon (Cz‐Si). The Cz‐Si samples are first irradiated at room temperature with 2.5 MeV electrons and then heat‐treated at 320 °C to anneal out the VO, V2O, and V3O centers and generate the VO2, V2O2, and V3O2 complexes as the dominant vacancy‐oxygen‐related defects. Subsequently, the samples are irradiated at room temperature again and subjected to 30‐min isochronal annealing in the temperature range 75–350 °C. Defect evolution upon the treatments is monitored by means of the local vibrational mode (LVM) absorption spectroscopy. From an analysis of changes in intensity of the LVM lines it is revealed that the second irradiation results in a noticeable decrease in the concentrations of the VO2, V2O2, and V3O2 complexes and an increase in the concentrations of the oxygen dimer and the VO2* defect (metastable state of VO2, which consists of the VO and Oi components). The observed defect transformations are argued to be related to interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*. The formation of the VO2* and O2i complexes in Czochralski‐grown silicon is promoted by two stage electron irradiation at room temperature with a heat‐treatment between the stages. The enhanced formation of these defects is caused by the interactions of the radiation‐induced self‐interstitial silicon atoms (I) with the vacancy‐oxygen complexes via the following reactions: VO2 + I → O2i, V3O2 + I → V2O2, V2O2 + I → VO2*.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssa.201800609</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2019-05, Vol.216 (10), p.n/a
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_journals_2229044547
source Wiley Online Library Journals Frontfile Complete
subjects Annealing
Defects
Dimers
Electron irradiation
Interstitials
local vibrational modes
Metastable state
Oxygen
self‐interstitials
Silicon
Vacancies
vacancy‐oxygen defects
Vanadium oxides
Vibration monitoring
title Interaction of Radiation‐Induced Self‐Interstitials with Vacancy‐Oxygen Related Defects VnO2 (n from 1 to 3) in Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A09%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20of%20Radiation%E2%80%90Induced%20Self%E2%80%90Interstitials%20with%20Vacancy%E2%80%90Oxygen%20Related%20Defects%20VnO2%20(n%20from%201%20to%203)%20in%20Silicon&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Murin,%20Leonid%20I.&rft.date=2019-05-22&rft.volume=216&rft.issue=10&rft.epage=n/a&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201800609&rft_dat=%3Cproquest_wiley%3E2229044547%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2229044547&rft_id=info:pmid/&rfr_iscdi=true