Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway

Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2004-03, Vol.17 (6), p.1176-1189
Hauptverfasser: Gong, Gavin, Entekhabi, Dara, Cohen, Judah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1189
container_issue 6
container_start_page 1176
container_title Journal of climate
container_volume 17
creator Gong, Gavin
Entekhabi, Dara
Cohen, Judah
description Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigated using numerical experiments analogous to the previous studies. The climatic response to the same snow perturbation is investigated under modified orographic barriers in southern and eastern Siberia. Reducing these barriers results in a weakening of the prevailing orographically forced region of stationary wave activity centered over Siberia, as well as the snow-forced upward wave flux anomaly that initiates the teleconnection. This diminished anomaly propagates upward, but does not extend into the stratosphere to weaken the polar vortex. Consequently, poleward refraction of upper-tropospheric waves and downward propagation of coupled wave–mean flow anomalies, which ultimately produce the negative winter AO response, fail to develop. Thus, the mountains represent an orographic constraint on the snow–AO teleconnection pathway. By reducing the orographic barrier, the snow-forced influx of wave energy remains in the troposphere and, instead, produces a hemispheric-scale equatorward wave refraction.
doi_str_mv 10.1175/1520-0442(2004)017<1176:OCOAMS>2.0.CO;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_222895756</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26251706</jstor_id><sourcerecordid>26251706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-3c56959c3d79e607ff72c415de40a4be26eb3171ad64c95aa372111801d1daeb3</originalsourceid><addsrcrecordid>eNpFkN1KJDEQhYOs4Kz6CEIjCLsXPVal8zO9uyxIo66gtDDjdcik004Ps0lv0iLe-Q6-oU9imnH1qqhTp86Bj5BThCmi5KfIKeTAGP1GAdh3QPkr6eJHXdVnN_PfdArTqv5Jd8jkw_mFTGBWsnwmOd8jX2NcAyAVABNyXwd_H3S_6kxWeReHoDs3xMy7TGc3vrEb22TzbmlDp102d_7x9fllEXzvY79KoknrPD0N__dskV6Md86aoUspt3pYPeqnA7Lb6k20h-9zn9xdnC-qP_l1fXlVnV3nphA45IXhouSlKRpZWgGybSU1DHljGWi2tFTYZYESdSOYKbnWhaSIOANssNHptk-Ot7l98P8ebBzU2j8ElyoVpXRWcslFMl1uTSb4GINtVR-6vzo8KQQ1QlYjOjWiUyNklSCPulBbyIoqUFWtaEo6ea_T0ehNG7QzXfyM4yKB5yz5jra-dRx8-LhTQTlKEMUbt2iM-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222895756</pqid></control><display><type>article</type><title>Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gong, Gavin ; Entekhabi, Dara ; Cohen, Judah</creator><creatorcontrib>Gong, Gavin ; Entekhabi, Dara ; Cohen, Judah</creatorcontrib><description>Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigated using numerical experiments analogous to the previous studies. The climatic response to the same snow perturbation is investigated under modified orographic barriers in southern and eastern Siberia. Reducing these barriers results in a weakening of the prevailing orographically forced region of stationary wave activity centered over Siberia, as well as the snow-forced upward wave flux anomaly that initiates the teleconnection. This diminished anomaly propagates upward, but does not extend into the stratosphere to weaken the polar vortex. Consequently, poleward refraction of upper-tropospheric waves and downward propagation of coupled wave–mean flow anomalies, which ultimately produce the negative winter AO response, fail to develop. Thus, the mountains represent an orographic constraint on the snow–AO teleconnection pathway. By reducing the orographic barrier, the snow-forced influx of wave energy remains in the troposphere and, instead, produces a hemispheric-scale equatorward wave refraction.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(2004)017&lt;1176:OCOAMS&gt;2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmospherics ; Autumn ; Climate ; Climatology. Bioclimatology. Climate change ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Mountains ; Northern hemisphere ; Orography ; Snow ; Stratosphere ; Teleconnections ; Troposphere ; Wave energy ; Wave propagation ; Wave refraction ; Winter</subject><ispartof>Journal of climate, 2004-03, Vol.17 (6), p.1176-1189</ispartof><rights>2004 American Meteorological Society</rights><rights>2005 INIST-CNRS</rights><rights>Copyright American Meteorological Society Mar 15, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c361t-3c56959c3d79e607ff72c415de40a4be26eb3171ad64c95aa372111801d1daeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26251706$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26251706$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15608954$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Gavin</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Cohen, Judah</creatorcontrib><title>Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway</title><title>Journal of climate</title><description>Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigated using numerical experiments analogous to the previous studies. The climatic response to the same snow perturbation is investigated under modified orographic barriers in southern and eastern Siberia. Reducing these barriers results in a weakening of the prevailing orographically forced region of stationary wave activity centered over Siberia, as well as the snow-forced upward wave flux anomaly that initiates the teleconnection. This diminished anomaly propagates upward, but does not extend into the stratosphere to weaken the polar vortex. Consequently, poleward refraction of upper-tropospheric waves and downward propagation of coupled wave–mean flow anomalies, which ultimately produce the negative winter AO response, fail to develop. Thus, the mountains represent an orographic constraint on the snow–AO teleconnection pathway. By reducing the orographic barrier, the snow-forced influx of wave energy remains in the troposphere and, instead, produces a hemispheric-scale equatorward wave refraction.</description><subject>Atmospherics</subject><subject>Autumn</subject><subject>Climate</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Mountains</subject><subject>Northern hemisphere</subject><subject>Orography</subject><subject>Snow</subject><subject>Stratosphere</subject><subject>Teleconnections</subject><subject>Troposphere</subject><subject>Wave energy</subject><subject>Wave propagation</subject><subject>Wave refraction</subject><subject>Winter</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkN1KJDEQhYOs4Kz6CEIjCLsXPVal8zO9uyxIo66gtDDjdcik004Ps0lv0iLe-Q6-oU9imnH1qqhTp86Bj5BThCmi5KfIKeTAGP1GAdh3QPkr6eJHXdVnN_PfdArTqv5Jd8jkw_mFTGBWsnwmOd8jX2NcAyAVABNyXwd_H3S_6kxWeReHoDs3xMy7TGc3vrEb22TzbmlDp102d_7x9fllEXzvY79KoknrPD0N__dskV6Md86aoUspt3pYPeqnA7Lb6k20h-9zn9xdnC-qP_l1fXlVnV3nphA45IXhouSlKRpZWgGybSU1DHljGWi2tFTYZYESdSOYKbnWhaSIOANssNHptk-Ot7l98P8ebBzU2j8ElyoVpXRWcslFMl1uTSb4GINtVR-6vzo8KQQ1QlYjOjWiUyNklSCPulBbyIoqUFWtaEo6ea_T0ehNG7QzXfyM4yKB5yz5jra-dRx8-LhTQTlKEMUbt2iM-w</recordid><startdate>20040315</startdate><enddate>20040315</enddate><creator>Gong, Gavin</creator><creator>Entekhabi, Dara</creator><creator>Cohen, Judah</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20040315</creationdate><title>Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway</title><author>Gong, Gavin ; Entekhabi, Dara ; Cohen, Judah</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-3c56959c3d79e607ff72c415de40a4be26eb3171ad64c95aa372111801d1daeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atmospherics</topic><topic>Autumn</topic><topic>Climate</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Mountains</topic><topic>Northern hemisphere</topic><topic>Orography</topic><topic>Snow</topic><topic>Stratosphere</topic><topic>Teleconnections</topic><topic>Troposphere</topic><topic>Wave energy</topic><topic>Wave propagation</topic><topic>Wave refraction</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Gavin</creatorcontrib><creatorcontrib>Entekhabi, Dara</creatorcontrib><creatorcontrib>Cohen, Judah</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Gavin</au><au>Entekhabi, Dara</au><au>Cohen, Judah</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway</atitle><jtitle>Journal of climate</jtitle><date>2004-03-15</date><risdate>2004</risdate><volume>17</volume><issue>6</issue><spage>1176</spage><epage>1189</epage><pages>1176-1189</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Previous modeling studies have identified a teleconnection pathway linking observation-based early season Siberian snow perturbations to a modulation of the winter Arctic Oscillation (AO) mode. In this study, the key role of orography in producing this modeled teleconnection is explicitly investigated using numerical experiments analogous to the previous studies. The climatic response to the same snow perturbation is investigated under modified orographic barriers in southern and eastern Siberia. Reducing these barriers results in a weakening of the prevailing orographically forced region of stationary wave activity centered over Siberia, as well as the snow-forced upward wave flux anomaly that initiates the teleconnection. This diminished anomaly propagates upward, but does not extend into the stratosphere to weaken the polar vortex. Consequently, poleward refraction of upper-tropospheric waves and downward propagation of coupled wave–mean flow anomalies, which ultimately produce the negative winter AO response, fail to develop. Thus, the mountains represent an orographic constraint on the snow–AO teleconnection pathway. By reducing the orographic barrier, the snow-forced influx of wave energy remains in the troposphere and, instead, produces a hemispheric-scale equatorward wave refraction.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(2004)017&lt;1176:OCOAMS&gt;2.0.CO;2</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2004-03, Vol.17 (6), p.1176-1189
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_222895756
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Atmospherics
Autumn
Climate
Climatology. Bioclimatology. Climate change
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Mountains
Northern hemisphere
Orography
Snow
Stratosphere
Teleconnections
Troposphere
Wave energy
Wave propagation
Wave refraction
Winter
title Orographic Constraints on a Modeled Siberian Snow–Tropospheric–Stratospheric Teleconnection Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A39%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orographic%20Constraints%20on%20a%20Modeled%20Siberian%20Snow%E2%80%93Tropospheric%E2%80%93Stratospheric%20Teleconnection%20Pathway&rft.jtitle=Journal%20of%20climate&rft.au=Gong,%20Gavin&rft.date=2004-03-15&rft.volume=17&rft.issue=6&rft.spage=1176&rft.epage=1189&rft.pages=1176-1189&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(2004)017%3C1176:OCOAMS%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26251706%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222895756&rft_id=info:pmid/&rft_jstor_id=26251706&rfr_iscdi=true