Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?

The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2003-11, Vol.16 (21), p.3535-3542
Hauptverfasser: Burnett, Adam W., Kirby, Matthew E., Mullins, Henry T., Patterson, William P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3542
container_issue 21
container_start_page 3535
container_title Journal of climate
container_volume 16
creator Burnett, Adam W.
Kirby, Matthew E.
Mullins, Henry T.
Patterson, William P.
description The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [ δ 18 O ( CaCO 3 ) ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower δ 18 O ( CaCO 3 ) values. Records of air temperature, water temperature, and lake ice suggest that the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.
doi_str_mv 10.1175/1520-0442(2003)016<3535:iglsdt>2.0.co;2
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_222893787</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26249897</jstor_id><sourcerecordid>26249897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-ffd64c92fc327ccbb4fc34d00918f459e2504eece8b50858d8f78980b4abe91f3</originalsourceid><addsrcrecordid>eNpFkNFq2zAUhsVoYWm6RxiYwWC9cHp0LFlSVwol7bJAoBfNroUtS62z1E4lhZC7vsPecE8ymYTu6vxwPv4fPkIuKUwoFfyScoQcGMNvCFBcAC2vC17wq_ZpHZp4gxOYmP47fiCjd_KEjEAqlkvB-UdyFsIKgGIJMCJ38854W4W2e8pmKcRsUf22f9_-3DtnTcweu37nqvU6a7Z-YOKzzZY728XWxudsmsLW78_JaWKC_XS8Y_Lrx_1y-jNfPMzm09tFbhiKmDvXlMwodKZAYUxds5RYA6CodIwrixyYtcbKmoPkspFOSCWhZlVtFXXFmHw59G58_7q1IepVv_VdmtSIKFUhpEjQ7AAZ34fgrdMb375Ufq8p6MGgHrzowYseDOpkUA8G9Xy2eLxbatSgpw8aU9PX41wVTLV2vupMG_7XceRCYZm4zwduFWLv3_9YIlNSieIf3h9_mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222893787</pqid></control><display><type>article</type><title>Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?</title><source>American Meteorological Society</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Burnett, Adam W. ; Kirby, Matthew E. ; Mullins, Henry T. ; Patterson, William P.</creator><creatorcontrib>Burnett, Adam W. ; Kirby, Matthew E. ; Mullins, Henry T. ; Patterson, William P.</creatorcontrib><description>The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [ δ 18 O ( CaCO 3 ) ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower δ 18 O ( CaCO 3 ) values. Records of air temperature, water temperature, and lake ice suggest that the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(2003)016&lt;3535:iglsdt&gt;2.0.co;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Air temperature ; Climate change ; Climatic zones ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Global temperatures ; Global warming ; Hydrology ; Ice cover ; Lake ice ; Lakes ; Meteorology ; NOTES AND CORRESPONDENCE ; Oxygen isotopes ; Paleoclimatology ; Precipitation ; Seasons ; Sediments ; Snow ; Surface temperature ; Surface water ; Temperature ; Water in the atmosphere (humidity, clouds, evaporation, precipitation) ; Water temperature</subject><ispartof>Journal of climate, 2003-11, Vol.16 (21), p.3535-3542</ispartof><rights>2003 American Meteorological Society</rights><rights>2004 INIST-CNRS</rights><rights>Copyright American Meteorological Society Nov 1, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c427t-ffd64c92fc327ccbb4fc34d00918f459e2504eece8b50858d8f78980b4abe91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26249897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26249897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,3681,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15257926$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burnett, Adam W.</creatorcontrib><creatorcontrib>Kirby, Matthew E.</creatorcontrib><creatorcontrib>Mullins, Henry T.</creatorcontrib><creatorcontrib>Patterson, William P.</creatorcontrib><title>Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?</title><title>Journal of climate</title><description>The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [ δ 18 O ( CaCO 3 ) ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower δ 18 O ( CaCO 3 ) values. Records of air temperature, water temperature, and lake ice suggest that the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.</description><subject>Air temperature</subject><subject>Climate change</subject><subject>Climatic zones</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Global temperatures</subject><subject>Global warming</subject><subject>Hydrology</subject><subject>Ice cover</subject><subject>Lake ice</subject><subject>Lakes</subject><subject>Meteorology</subject><subject>NOTES AND CORRESPONDENCE</subject><subject>Oxygen isotopes</subject><subject>Paleoclimatology</subject><subject>Precipitation</subject><subject>Seasons</subject><subject>Sediments</subject><subject>Snow</subject><subject>Surface temperature</subject><subject>Surface water</subject><subject>Temperature</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><subject>Water temperature</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkNFq2zAUhsVoYWm6RxiYwWC9cHp0LFlSVwol7bJAoBfNroUtS62z1E4lhZC7vsPecE8ymYTu6vxwPv4fPkIuKUwoFfyScoQcGMNvCFBcAC2vC17wq_ZpHZp4gxOYmP47fiCjd_KEjEAqlkvB-UdyFsIKgGIJMCJ38854W4W2e8pmKcRsUf22f9_-3DtnTcweu37nqvU6a7Z-YOKzzZY728XWxudsmsLW78_JaWKC_XS8Y_Lrx_1y-jNfPMzm09tFbhiKmDvXlMwodKZAYUxds5RYA6CodIwrixyYtcbKmoPkspFOSCWhZlVtFXXFmHw59G58_7q1IepVv_VdmtSIKFUhpEjQ7AAZ34fgrdMb375Ufq8p6MGgHrzowYseDOpkUA8G9Xy2eLxbatSgpw8aU9PX41wVTLV2vupMG_7XceRCYZm4zwduFWLv3_9YIlNSieIf3h9_mg</recordid><startdate>20031101</startdate><enddate>20031101</enddate><creator>Burnett, Adam W.</creator><creator>Kirby, Matthew E.</creator><creator>Mullins, Henry T.</creator><creator>Patterson, William P.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20031101</creationdate><title>Increasing Great Lake–Effect Snowfall during the Twentieth Century</title><author>Burnett, Adam W. ; Kirby, Matthew E. ; Mullins, Henry T. ; Patterson, William P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-ffd64c92fc327ccbb4fc34d00918f459e2504eece8b50858d8f78980b4abe91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Air temperature</topic><topic>Climate change</topic><topic>Climatic zones</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Global temperatures</topic><topic>Global warming</topic><topic>Hydrology</topic><topic>Ice cover</topic><topic>Lake ice</topic><topic>Lakes</topic><topic>Meteorology</topic><topic>NOTES AND CORRESPONDENCE</topic><topic>Oxygen isotopes</topic><topic>Paleoclimatology</topic><topic>Precipitation</topic><topic>Seasons</topic><topic>Sediments</topic><topic>Snow</topic><topic>Surface temperature</topic><topic>Surface water</topic><topic>Temperature</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><topic>Water temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burnett, Adam W.</creatorcontrib><creatorcontrib>Kirby, Matthew E.</creatorcontrib><creatorcontrib>Mullins, Henry T.</creatorcontrib><creatorcontrib>Patterson, William P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burnett, Adam W.</au><au>Kirby, Matthew E.</au><au>Mullins, Henry T.</au><au>Patterson, William P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?</atitle><jtitle>Journal of climate</jtitle><date>2003-11-01</date><risdate>2003</risdate><volume>16</volume><issue>21</issue><spage>3535</spage><epage>3542</epage><pages>3535-3542</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>The influence of the Laurentian Great Lakes on the climate of surrounding regions is significant, especially in leeward settings where lake-effect snowfall occurs. Heavy lake-effect snow represents a potential natural hazard and plays important roles in winter recreational activities, agriculture, and regional hydrology. Changes in lake-effect snowfall may represent a regional-scale manifestation of hemispheric-scale climate change, such as that associated with global warming. This study examines records of snowfall from several lake-effect and non-lake-effect sites throughout most of the twentieth century in order to 1) determine whether differences in snowfall trends exist between these settings and 2) offer possible linkages between lake-effect snow trends and records of air temperature, water temperature, and ice cover. A new, historic record of oxygen isotope [ δ 18 O ( CaCO 3 ) ] data from the sediments of three eastern Finger Lakes in central New York is presented as a means of independently assessing changes in Great Lakes lake-effect snowfall. Results reveal a statistically significant increasing trend in snowfall for the lake-effect sites, whereas no trend is observed in the non-lake-effect settings. The Finger Lake oxygen isotope record reflects this increase in lake-effect snow through a statistically significant trend toward lower δ 18 O ( CaCO 3 ) values. Records of air temperature, water temperature, and lake ice suggest that the observed lake-effect snow increase during the twentieth century may be the result of warmer Great Lakes surface waters and decreased ice cover, both of which are consistent with the historic upward trend in Northern Hemispheric temperature due to global warming. Given projected increases in future global temperature, areas downwind of the Great Lakes may experience increased lake-effect snowfall for the foreseeable future.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(2003)016&lt;3535:iglsdt&gt;2.0.co;2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2003-11, Vol.16 (21), p.3535-3542
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_222893787
source American Meteorological Society; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects Air temperature
Climate change
Climatic zones
Earth, ocean, space
Exact sciences and technology
External geophysics
Global temperatures
Global warming
Hydrology
Ice cover
Lake ice
Lakes
Meteorology
NOTES AND CORRESPONDENCE
Oxygen isotopes
Paleoclimatology
Precipitation
Seasons
Sediments
Snow
Surface temperature
Surface water
Temperature
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
Water temperature
title Increasing Great Lake–Effect Snowfall during the Twentieth Century: A Regional Response to Global Warming?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Increasing%20Great%20Lake%E2%80%93Effect%20Snowfall%20during%20the%20Twentieth%20Century:%20A%20Regional%20Response%20to%20Global%20Warming?&rft.jtitle=Journal%20of%20climate&rft.au=Burnett,%20Adam%20W.&rft.date=2003-11-01&rft.volume=16&rft.issue=21&rft.spage=3535&rft.epage=3542&rft.pages=3535-3542&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(2003)016%3C3535:iglsdt%3E2.0.co;2&rft_dat=%3Cjstor_proqu%3E26249897%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222893787&rft_id=info:pmid/&rft_jstor_id=26249897&rfr_iscdi=true