A Nonparametric Test for Trends in the Occurrence of Rare Events
A nonparametric test for trends in the occurrence of rare events, based on the average position that the events occupy in the series, is presented. This test is formally identical to the Wilcoxon–Mann–Whitney test for the difference of means between two samples. In the present application, however,...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2003-08, Vol.16 (15), p.2602-2614 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2614 |
---|---|
container_issue | 15 |
container_start_page | 2602 |
container_title | Journal of climate |
container_volume | 16 |
creator | López-Díaz, José A. |
description | A nonparametric test for trends in the occurrence of rare events, based on the average position that the events occupy in the series, is presented. This test is formally identical to the Wilcoxon–Mann–Whitney test for the difference of means between two samples. In the present application, however, the range of values of the lengthNof the series for which accurate critical values are available has to be expanded considerably. Exact formulas for thepvalue of the test on the average position for number of eventsm= 2, 3, and 4 are given, as well as a recursive relation for generalm. Since this procedure cannot in practical times be carried out beyond a smallm, a combinatorial technique that allows thep-value computation with great accuracy is explained. Formgreater than around 20 it is shown that the convergence to the normal distribution is good. The power of this nonparametric test is shown to be superior to that of tests based on the interevent times. The test is applied to a series of annual minimum temperatures and to a series of seasonal precipitation totals, thereby illustrating the practical advantages of this approach. |
doi_str_mv | 10.1175/1520-0442(2003)016<2602:ANTFTI>2.0.CO;2 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_222893549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26249828</jstor_id><sourcerecordid>26249828</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-9c7952fa63976b6369ecce3dc843f75d88c7eb4c89daad55a57f02938c4c17cf3</originalsourceid><addsrcrecordid>eNpFkNtKAzEQhoMoWA-PIARB0Ittk8lmN1ERS6kHkBZkvQ7pbIItuluTreDbm6VSrwZmvvln-AgZcTbkvJQjLoFlLM_hEhgTV4wXt1AwuB7Pqofq-Q6GbDiZ38AeGezIfTJgSueZKqU8JEcxrhjjaYkNyP2YztpmbYP9dF1YIq1c7KhvA62Ca-pIlw3t3h2dI25C6qCjraevNjg6_XZNF0_Igbcf0Z3-1WPy9jCtJk_Zy_zxeTJ-yVAUoss0llqCt4XQZbEoRKEdohM1qlz4UtZKYekWOSpdW1tLaWXpGWihMEdeohfH5Hybuw7t1yY9aVbtJjTppAEApYXMdYIetxCGNsbgvFmH5acNP4Yz09szvRPTOzG9PZPsmd6e2dozYJiZzA2kpIu_czai_fDBNriM_3GSiRTCE3e25Vaxa8NuDgXkWoESv5gweyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222893549</pqid></control><display><type>article</type><title>A Nonparametric Test for Trends in the Occurrence of Rare Events</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>López-Díaz, José A.</creator><creatorcontrib>López-Díaz, José A.</creatorcontrib><description>A nonparametric test for trends in the occurrence of rare events, based on the average position that the events occupy in the series, is presented. This test is formally identical to the Wilcoxon–Mann–Whitney test for the difference of means between two samples. In the present application, however, the range of values of the lengthNof the series for which accurate critical values are available has to be expanded considerably. Exact formulas for thepvalue of the test on the average position for number of eventsm= 2, 3, and 4 are given, as well as a recursive relation for generalm. Since this procedure cannot in practical times be carried out beyond a smallm, a combinatorial technique that allows thep-value computation with great accuracy is explained. Formgreater than around 20 it is shown that the convergence to the normal distribution is good. The power of this nonparametric test is shown to be superior to that of tests based on the interevent times. The test is applied to a series of annual minimum temperatures and to a series of seasonal precipitation totals, thereby illustrating the practical advantages of this approach.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/1520-0442(2003)016<2602:ANTFTI>2.0.CO;2</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Approximation ; Arithmetic mean ; Climate ; Climate change ; Critical values ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Geophysics. Techniques, methods, instrumentation and models ; Nonparametric tests ; Null hypothesis ; P values ; Random sampling ; Random variables ; Series convergence ; Simulation ; Temperature</subject><ispartof>Journal of climate, 2003-08, Vol.16 (15), p.2602-2614</ispartof><rights>2003 American Meteorological Society</rights><rights>2003 INIST-CNRS</rights><rights>Copyright American Meteorological Society Aug 1, 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c363t-9c7952fa63976b6369ecce3dc843f75d88c7eb4c89daad55a57f02938c4c17cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26249828$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26249828$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15034421$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Díaz, José A.</creatorcontrib><title>A Nonparametric Test for Trends in the Occurrence of Rare Events</title><title>Journal of climate</title><description>A nonparametric test for trends in the occurrence of rare events, based on the average position that the events occupy in the series, is presented. This test is formally identical to the Wilcoxon–Mann–Whitney test for the difference of means between two samples. In the present application, however, the range of values of the lengthNof the series for which accurate critical values are available has to be expanded considerably. Exact formulas for thepvalue of the test on the average position for number of eventsm= 2, 3, and 4 are given, as well as a recursive relation for generalm. Since this procedure cannot in practical times be carried out beyond a smallm, a combinatorial technique that allows thep-value computation with great accuracy is explained. Formgreater than around 20 it is shown that the convergence to the normal distribution is good. The power of this nonparametric test is shown to be superior to that of tests based on the interevent times. The test is applied to a series of annual minimum temperatures and to a series of seasonal precipitation totals, thereby illustrating the practical advantages of this approach.</description><subject>Approximation</subject><subject>Arithmetic mean</subject><subject>Climate</subject><subject>Climate change</subject><subject>Critical values</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Nonparametric tests</subject><subject>Null hypothesis</subject><subject>P values</subject><subject>Random sampling</subject><subject>Random variables</subject><subject>Series convergence</subject><subject>Simulation</subject><subject>Temperature</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpFkNtKAzEQhoMoWA-PIARB0Ittk8lmN1ERS6kHkBZkvQ7pbIItuluTreDbm6VSrwZmvvln-AgZcTbkvJQjLoFlLM_hEhgTV4wXt1AwuB7Pqofq-Q6GbDiZ38AeGezIfTJgSueZKqU8JEcxrhjjaYkNyP2YztpmbYP9dF1YIq1c7KhvA62Ca-pIlw3t3h2dI25C6qCjraevNjg6_XZNF0_Igbcf0Z3-1WPy9jCtJk_Zy_zxeTJ-yVAUoss0llqCt4XQZbEoRKEdohM1qlz4UtZKYekWOSpdW1tLaWXpGWihMEdeohfH5Hybuw7t1yY9aVbtJjTppAEApYXMdYIetxCGNsbgvFmH5acNP4Yz09szvRPTOzG9PZPsmd6e2dozYJiZzA2kpIu_czai_fDBNriM_3GSiRTCE3e25Vaxa8NuDgXkWoESv5gweyU</recordid><startdate>20030801</startdate><enddate>20030801</enddate><creator>López-Díaz, José A.</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20030801</creationdate><title>A Nonparametric Test for Trends in the Occurrence of Rare Events</title><author>López-Díaz, José A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-9c7952fa63976b6369ecce3dc843f75d88c7eb4c89daad55a57f02938c4c17cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Approximation</topic><topic>Arithmetic mean</topic><topic>Climate</topic><topic>Climate change</topic><topic>Critical values</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Nonparametric tests</topic><topic>Null hypothesis</topic><topic>P values</topic><topic>Random sampling</topic><topic>Random variables</topic><topic>Series convergence</topic><topic>Simulation</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Díaz, José A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agricultural Science Database</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Díaz, José A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Nonparametric Test for Trends in the Occurrence of Rare Events</atitle><jtitle>Journal of climate</jtitle><date>2003-08-01</date><risdate>2003</risdate><volume>16</volume><issue>15</issue><spage>2602</spage><epage>2614</epage><pages>2602-2614</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>A nonparametric test for trends in the occurrence of rare events, based on the average position that the events occupy in the series, is presented. This test is formally identical to the Wilcoxon–Mann–Whitney test for the difference of means between two samples. In the present application, however, the range of values of the lengthNof the series for which accurate critical values are available has to be expanded considerably. Exact formulas for thepvalue of the test on the average position for number of eventsm= 2, 3, and 4 are given, as well as a recursive relation for generalm. Since this procedure cannot in practical times be carried out beyond a smallm, a combinatorial technique that allows thep-value computation with great accuracy is explained. Formgreater than around 20 it is shown that the convergence to the normal distribution is good. The power of this nonparametric test is shown to be superior to that of tests based on the interevent times. The test is applied to a series of annual minimum temperatures and to a series of seasonal precipitation totals, thereby illustrating the practical advantages of this approach.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/1520-0442(2003)016<2602:ANTFTI>2.0.CO;2</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2003-08, Vol.16 (15), p.2602-2614 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_222893549 |
source | Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Approximation Arithmetic mean Climate Climate change Critical values Earth, ocean, space Exact sciences and technology External geophysics Geophysics. Techniques, methods, instrumentation and models Nonparametric tests Null hypothesis P values Random sampling Random variables Series convergence Simulation Temperature |
title | A Nonparametric Test for Trends in the Occurrence of Rare Events |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T15%3A43%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Nonparametric%20Test%20for%20Trends%20in%20the%20Occurrence%20of%20Rare%20Events&rft.jtitle=Journal%20of%20climate&rft.au=L%C3%B3pez-D%C3%ADaz,%20Jos%C3%A9%20A.&rft.date=2003-08-01&rft.volume=16&rft.issue=15&rft.spage=2602&rft.epage=2614&rft.pages=2602-2614&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/1520-0442(2003)016%3C2602:ANTFTI%3E2.0.CO;2&rft_dat=%3Cjstor_proqu%3E26249828%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222893549&rft_id=info:pmid/&rft_jstor_id=26249828&rfr_iscdi=true |