Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position
Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2019-04, Vol.373 (3-4), p.1457-1483 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1483 |
---|---|
container_issue | 3-4 |
container_start_page | 1457 |
container_title | Mathematische annalen |
container_volume | 373 |
creator | Ji, Qingchun Yan, Qiming Yu, Guangsheng |
description | Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section. |
doi_str_mv | 10.1007/s00208-018-1661-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2228745128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228745128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJmqTpURZ1Fxa8KHgLaTapWbpNTdoF_71ZKnjyNPDmvTfDh9AtgXsCUD0kAAoSA5GYCEEwO0MLwkqKiYTqHC3ymmMuS3KJrlLaA0AJwBfoYx26cAhx-PSmMFM82lT4fgyF7lrbRJ3Vo47ejn5e2JisGX3fFjt_9CnEk1qkqWltb6PuiiEkP_rQX6MLp7tkb37nEr0_P72t1nj7-rJZPW6xKYkYsasEEyApMYZVzc7JuqI1FbppJBdlI7TT1Lq6coLJWnDJef67Ng5YLbJZl0t0N_cOMXxNNo1qH6bY55OKUiorxgmV2UVml4khpWidGqI_6PitCKgTQDUDVBmgOgFULGfonEnZ27c2_jX_H_oBI1Jz8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228745128</pqid></control><display><type>article</type><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><source>SpringerNature Journals</source><creator>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</creator><creatorcontrib>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</creatorcontrib><description>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-018-1661-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2019-04, Vol.373 (3-4), p.1457-1483</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</citedby><cites>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-018-1661-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-018-1661-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ji, Qingchun</creatorcontrib><creatorcontrib>Yan, Qiming</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJmqTpURZ1Fxa8KHgLaTapWbpNTdoF_71ZKnjyNPDmvTfDh9AtgXsCUD0kAAoSA5GYCEEwO0MLwkqKiYTqHC3ymmMuS3KJrlLaA0AJwBfoYx26cAhx-PSmMFM82lT4fgyF7lrbRJ3Vo47ejn5e2JisGX3fFjt_9CnEk1qkqWltb6PuiiEkP_rQX6MLp7tkb37nEr0_P72t1nj7-rJZPW6xKYkYsasEEyApMYZVzc7JuqI1FbppJBdlI7TT1Lq6coLJWnDJef67Ng5YLbJZl0t0N_cOMXxNNo1qH6bY55OKUiorxgmV2UVml4khpWidGqI_6PitCKgTQDUDVBmgOgFULGfonEnZ27c2_jX_H_oBI1Jz8w</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ji, Qingchun</creator><creator>Yan, Qiming</creator><creator>Yu, Guangsheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><author>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Qingchun</creatorcontrib><creatorcontrib>Yan, Qiming</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Qingchun</au><au>Yan, Qiming</au><au>Yu, Guangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>373</volume><issue>3-4</issue><spage>1457</spage><epage>1483</epage><pages>1457-1483</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-018-1661-4</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2019-04, Vol.373 (3-4), p.1457-1483 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_2228745128 |
source | SpringerNature Journals |
subjects | Algebra Mathematical analysis Mathematics Mathematics and Statistics Theorems |
title | Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holomorphic%20curves%20into%20algebraic%20varieties%20intersecting%20divisors%20in%20subgeneral%20position&rft.jtitle=Mathematische%20annalen&rft.au=Ji,%20Qingchun&rft.date=2019-04-01&rft.volume=373&rft.issue=3-4&rft.spage=1457&rft.epage=1483&rft.pages=1457-1483&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-018-1661-4&rft_dat=%3Cproquest_cross%3E2228745128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228745128&rft_id=info:pmid/&rfr_iscdi=true |