Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position

Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2019-04, Vol.373 (3-4), p.1457-1483
Hauptverfasser: Ji, Qingchun, Yan, Qiming, Yu, Guangsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1483
container_issue 3-4
container_start_page 1457
container_title Mathematische annalen
container_volume 373
creator Ji, Qingchun
Yan, Qiming
Yu, Guangsheng
description Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.
doi_str_mv 10.1007/s00208-018-1661-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2228745128</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228745128</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJmqTpURZ1Fxa8KHgLaTapWbpNTdoF_71ZKnjyNPDmvTfDh9AtgXsCUD0kAAoSA5GYCEEwO0MLwkqKiYTqHC3ymmMuS3KJrlLaA0AJwBfoYx26cAhx-PSmMFM82lT4fgyF7lrbRJ3Vo47ejn5e2JisGX3fFjt_9CnEk1qkqWltb6PuiiEkP_rQX6MLp7tkb37nEr0_P72t1nj7-rJZPW6xKYkYsasEEyApMYZVzc7JuqI1FbppJBdlI7TT1Lq6coLJWnDJef67Ng5YLbJZl0t0N_cOMXxNNo1qH6bY55OKUiorxgmV2UVml4khpWidGqI_6PitCKgTQDUDVBmgOgFULGfonEnZ27c2_jX_H_oBI1Jz8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228745128</pqid></control><display><type>article</type><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><source>SpringerNature Journals</source><creator>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</creator><creatorcontrib>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</creatorcontrib><description>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-018-1661-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algebra ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2019-04, Vol.373 (3-4), p.1457-1483</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</citedby><cites>FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-018-1661-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-018-1661-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Ji, Qingchun</creatorcontrib><creatorcontrib>Yan, Qiming</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</description><subject>Algebra</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJmqTpURZ1Fxa8KHgLaTapWbpNTdoF_71ZKnjyNPDmvTfDh9AtgXsCUD0kAAoSA5GYCEEwO0MLwkqKiYTqHC3ymmMuS3KJrlLaA0AJwBfoYx26cAhx-PSmMFM82lT4fgyF7lrbRJ3Vo47ejn5e2JisGX3fFjt_9CnEk1qkqWltb6PuiiEkP_rQX6MLp7tkb37nEr0_P72t1nj7-rJZPW6xKYkYsasEEyApMYZVzc7JuqI1FbppJBdlI7TT1Lq6coLJWnDJef67Ng5YLbJZl0t0N_cOMXxNNo1qH6bY55OKUiorxgmV2UVml4khpWidGqI_6PitCKgTQDUDVBmgOgFULGfonEnZ27c2_jX_H_oBI1Jz8w</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ji, Qingchun</creator><creator>Yan, Qiming</creator><creator>Yu, Guangsheng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</title><author>Ji, Qingchun ; Yan, Qiming ; Yu, Guangsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f76460821cc47bdf8972926abb8563b6afa2ef97f6489658553009cf0496f89a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algebra</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ji, Qingchun</creatorcontrib><creatorcontrib>Yan, Qiming</creatorcontrib><creatorcontrib>Yu, Guangsheng</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ji, Qingchun</au><au>Yan, Qiming</au><au>Yu, Guangsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>373</volume><issue>3-4</issue><spage>1457</spage><epage>1483</epage><pages>1457-1483</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>Recently, there are many developments on the second main theorem for holomorphic curves into algebraic varieties intersecting divisors in general position or subgeneral position. In this paper, we refine the concept of subgeneral position by introducing the notion of the index of subgeneral position. With this new notion we give some surprising improvement of the previous known second main theorem type results. Moreover, via the analogue between Nevanlinna theory and Diophantine approximation, the corresponding Schmidt’s subspace type theorems are also established in the final section.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-018-1661-4</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2019-04, Vol.373 (3-4), p.1457-1483
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_2228745128
source SpringerNature Journals
subjects Algebra
Mathematical analysis
Mathematics
Mathematics and Statistics
Theorems
title Holomorphic curves into algebraic varieties intersecting divisors in subgeneral position
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T14%3A49%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Holomorphic%20curves%20into%20algebraic%20varieties%20intersecting%20divisors%20in%20subgeneral%20position&rft.jtitle=Mathematische%20annalen&rft.au=Ji,%20Qingchun&rft.date=2019-04-01&rft.volume=373&rft.issue=3-4&rft.spage=1457&rft.epage=1483&rft.pages=1457-1483&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-018-1661-4&rft_dat=%3Cproquest_cross%3E2228745128%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228745128&rft_id=info:pmid/&rfr_iscdi=true