ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites

To solve the problem that users’ retrieval intentions are seldom considered by personalized websites, we propose an improved incremental collaborative filtering (CF)-based recommendation implementation method (ICFR) in this paper. The ICFR model uses one of the most popular recommendation algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2020-03, Vol.23 (2), p.1319-1340
Hauptverfasser: Tang, Yayuan, Guo, Kehua, Zhang, Ruifang, Xu, Tao, Ma, Jianhua, Chi, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1340
container_issue 2
container_start_page 1319
container_title World wide web (Bussum)
container_volume 23
creator Tang, Yayuan
Guo, Kehua
Zhang, Ruifang
Xu, Tao
Ma, Jianhua
Chi, Tao
description To solve the problem that users’ retrieval intentions are seldom considered by personalized websites, we propose an improved incremental collaborative filtering (CF)-based recommendation implementation method (ICFR) in this paper. The ICFR model uses one of the most popular recommendation algorithms – the collaborative filtering recommendation algorithm – for personalized websites. This paper first uses a CF algorithm to obtain the relationship between user preferences and recommended content. Second, the browsing behaviour information of users is extracted by analysing Web logs and is then converted into ratings. Finally, an incremental algorithm is designed to update historical user preference data. Based on this established model, we propose some cases for this architecture, which illustrate that the ICFR model is suitable for personalized website recommendations.
doi_str_mv 10.1007/s11280-019-00693-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2228413141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2228413141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-ad0565c4741727aeb32d1dd390c5ed7135130c2e01c4579d4960d0574fe46a83</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhoMoOKd_wKuA19V8tE3r3RhOBwNBduFdSJNT7eiaetL59evNVsE7r3Lgfd6X8BByydk1Z0zdBM5FwRLGy4SxvJTJ5xGZ8EzJhKdcHsdbFnm8s-dTchbChkVKlnxCcDlfPN3SWUehrsEOzTvQprMIW-gG01Lr29ZUHs0hqZt2AGy6F1qZAI4iWL-NpIux76hB-9oMcWWHkfVIe8DgO9M23xH-gCrENJyTk9q0AS5-3ylZL-7W84dk9Xi_nM9WiZW8HBLjWJZnNlUpV0IZqKRw3DlZMpuBU1xmXDIrgHGbZqp0aZmzWFFpDWluCjklV-Nsj_5tB2HQG7_D-JmghRBF1LJXMyVipCz6EBBq3WOzNfilOdN7tXpUq6NafVCrP2NJjqXQ72UA_k3_0_oBVqF-Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2228413141</pqid></control><display><type>article</type><title>ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tang, Yayuan ; Guo, Kehua ; Zhang, Ruifang ; Xu, Tao ; Ma, Jianhua ; Chi, Tao</creator><creatorcontrib>Tang, Yayuan ; Guo, Kehua ; Zhang, Ruifang ; Xu, Tao ; Ma, Jianhua ; Chi, Tao</creatorcontrib><description>To solve the problem that users’ retrieval intentions are seldom considered by personalized websites, we propose an improved incremental collaborative filtering (CF)-based recommendation implementation method (ICFR) in this paper. The ICFR model uses one of the most popular recommendation algorithms – the collaborative filtering recommendation algorithm – for personalized websites. This paper first uses a CF algorithm to obtain the relationship between user preferences and recommended content. Second, the browsing behaviour information of users is extracted by analysing Web logs and is then converted into ratings. Finally, an incremental algorithm is designed to update historical user preference data. Based on this established model, we propose some cases for this architecture, which illustrate that the ICFR model is suitable for personalized website recommendations.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-019-00693-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Architecture ; Browsing ; Collaboration ; Computer Science ; Database Management ; Filtration ; Information Systems Applications (incl.Internet) ; Operating Systems ; Recommender systems ; Special Issue on Smart Computing and Cyber Technology for Cyberization ; Websites</subject><ispartof>World wide web (Bussum), 2020-03, Vol.23 (2), p.1319-1340</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>World Wide Web is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-ad0565c4741727aeb32d1dd390c5ed7135130c2e01c4579d4960d0574fe46a83</citedby><cites>FETCH-LOGICAL-c319t-ad0565c4741727aeb32d1dd390c5ed7135130c2e01c4579d4960d0574fe46a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-019-00693-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-019-00693-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tang, Yayuan</creatorcontrib><creatorcontrib>Guo, Kehua</creatorcontrib><creatorcontrib>Zhang, Ruifang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Chi, Tao</creatorcontrib><title>ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>To solve the problem that users’ retrieval intentions are seldom considered by personalized websites, we propose an improved incremental collaborative filtering (CF)-based recommendation implementation method (ICFR) in this paper. The ICFR model uses one of the most popular recommendation algorithms – the collaborative filtering recommendation algorithm – for personalized websites. This paper first uses a CF algorithm to obtain the relationship between user preferences and recommended content. Second, the browsing behaviour information of users is extracted by analysing Web logs and is then converted into ratings. Finally, an incremental algorithm is designed to update historical user preference data. Based on this established model, we propose some cases for this architecture, which illustrate that the ICFR model is suitable for personalized website recommendations.</description><subject>Algorithms</subject><subject>Architecture</subject><subject>Browsing</subject><subject>Collaboration</subject><subject>Computer Science</subject><subject>Database Management</subject><subject>Filtration</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Operating Systems</subject><subject>Recommender systems</subject><subject>Special Issue on Smart Computing and Cyber Technology for Cyberization</subject><subject>Websites</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kF1LwzAUhoMoOKd_wKuA19V8tE3r3RhOBwNBduFdSJNT7eiaetL59evNVsE7r3Lgfd6X8BByydk1Z0zdBM5FwRLGy4SxvJTJ5xGZ8EzJhKdcHsdbFnm8s-dTchbChkVKlnxCcDlfPN3SWUehrsEOzTvQprMIW-gG01Lr29ZUHs0hqZt2AGy6F1qZAI4iWL-NpIux76hB-9oMcWWHkfVIe8DgO9M23xH-gCrENJyTk9q0AS5-3ylZL-7W84dk9Xi_nM9WiZW8HBLjWJZnNlUpV0IZqKRw3DlZMpuBU1xmXDIrgHGbZqp0aZmzWFFpDWluCjklV-Nsj_5tB2HQG7_D-JmghRBF1LJXMyVipCz6EBBq3WOzNfilOdN7tXpUq6NafVCrP2NJjqXQ72UA_k3_0_oBVqF-Vg</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Tang, Yayuan</creator><creator>Guo, Kehua</creator><creator>Zhang, Ruifang</creator><creator>Xu, Tao</creator><creator>Ma, Jianhua</creator><creator>Chi, Tao</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20200301</creationdate><title>ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites</title><author>Tang, Yayuan ; Guo, Kehua ; Zhang, Ruifang ; Xu, Tao ; Ma, Jianhua ; Chi, Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-ad0565c4741727aeb32d1dd390c5ed7135130c2e01c4579d4960d0574fe46a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Architecture</topic><topic>Browsing</topic><topic>Collaboration</topic><topic>Computer Science</topic><topic>Database Management</topic><topic>Filtration</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Operating Systems</topic><topic>Recommender systems</topic><topic>Special Issue on Smart Computing and Cyber Technology for Cyberization</topic><topic>Websites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Yayuan</creatorcontrib><creatorcontrib>Guo, Kehua</creatorcontrib><creatorcontrib>Zhang, Ruifang</creatorcontrib><creatorcontrib>Xu, Tao</creatorcontrib><creatorcontrib>Ma, Jianhua</creatorcontrib><creatorcontrib>Chi, Tao</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Yayuan</au><au>Guo, Kehua</au><au>Zhang, Ruifang</au><au>Xu, Tao</au><au>Ma, Jianhua</au><au>Chi, Tao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>23</volume><issue>2</issue><spage>1319</spage><epage>1340</epage><pages>1319-1340</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>To solve the problem that users’ retrieval intentions are seldom considered by personalized websites, we propose an improved incremental collaborative filtering (CF)-based recommendation implementation method (ICFR) in this paper. The ICFR model uses one of the most popular recommendation algorithms – the collaborative filtering recommendation algorithm – for personalized websites. This paper first uses a CF algorithm to obtain the relationship between user preferences and recommended content. Second, the browsing behaviour information of users is extracted by analysing Web logs and is then converted into ratings. Finally, an incremental algorithm is designed to update historical user preference data. Based on this established model, we propose some cases for this architecture, which illustrate that the ICFR model is suitable for personalized website recommendations.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-019-00693-x</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2020-03, Vol.23 (2), p.1319-1340
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_journals_2228413141
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Architecture
Browsing
Collaboration
Computer Science
Database Management
Filtration
Information Systems Applications (incl.Internet)
Operating Systems
Recommender systems
Special Issue on Smart Computing and Cyber Technology for Cyberization
Websites
title ICFR: An effective incremental collaborative filtering based recommendation architecture for personalized websites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A39%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICFR:%20An%20effective%20incremental%20collaborative%20filtering%20based%20recommendation%20architecture%20for%20personalized%20websites&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Tang,%20Yayuan&rft.date=2020-03-01&rft.volume=23&rft.issue=2&rft.spage=1319&rft.epage=1340&rft.pages=1319-1340&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-019-00693-x&rft_dat=%3Cproquest_cross%3E2228413141%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2228413141&rft_id=info:pmid/&rfr_iscdi=true