Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases

Mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have a close relation with unitary 2-design and have attracted much attention in recent years. In the paper, we construct MUMEBs in C q ⊗ C q with q a power of an odd prime number. For this purpose, we introduce the notation o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quantum information processing 2019-07, Vol.18 (7), p.1-13, Article 213
1. Verfasser: Xu, Dengming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 7
container_start_page 1
container_title Quantum information processing
container_volume 18
creator Xu, Dengming
description Mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have a close relation with unitary 2-design and have attracted much attention in recent years. In the paper, we construct MUMEBs in C q ⊗ C q with q a power of an odd prime number. For this purpose, we introduce the notation of trace-2 excluded subset of the special linear group S L ( 2 , F q ) over the finite field F q and establish a relation between a trace-2 excluded subset and a set of MUMEBs in C q ⊗ C q . Under this relation, we prove that M ( q , q ) ≥ q 2 - 1 2 by constructing trace-2 excluded subsets in S L ( 2 , F q ) , which highly raises the lower bound of M ( q ,  q ) given in Liu et al. (Quantum Inf Process 16(6):159, 2017 ) and Xu (Quantum Inf. Process 16(3):65, 2017 ).
doi_str_mv 10.1007/s11128-019-2330-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227899209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227899209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-354f516759b4ed8f8d7ff544a7ac3f2f556045233d80537a3c67ceb2c6bd81ba3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrf4AbwHP0Tw2ye5Rii8oeKnnkM2jbEl312Qj7b83dgVPnmaY7zEzHwC3BN8TjOVDIoTQGmHSIMoYRuIMLAiXDBHG6PmpxwhLzi_BVUo7jCkRtViAaRO1cYhCdzAhW2dhym1yU4KDh2l0ptMBhq53OsJtHPJYgC8Xoe_6bnKluGAT1L2F-zxlHcIR5r7tdCpOe33o9qeR6yfdb0OZtQVJ1-DC65DczW9dgo_np83qFa3fX95Wj2tkGBETYrzynAjJm7Zytva1ld7zqtJSG-ap51zgipd3bY05k5oZIY1rqRGtrUmr2RLczb5jHD6zS5PaDTn2ZaWilMq6aShuCovMLBOHlKLzaozl7nhUBKufcNUcrirhqp9wlSgaOmtS4fZbF_-c_xd9A-IMfgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227899209</pqid></control><display><type>article</type><title>Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases</title><source>SpringerLink Journals</source><creator>Xu, Dengming</creator><creatorcontrib>Xu, Dengming</creatorcontrib><description>Mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have a close relation with unitary 2-design and have attracted much attention in recent years. In the paper, we construct MUMEBs in C q ⊗ C q with q a power of an odd prime number. For this purpose, we introduce the notation of trace-2 excluded subset of the special linear group S L ( 2 , F q ) over the finite field F q and establish a relation between a trace-2 excluded subset and a set of MUMEBs in C q ⊗ C q . Under this relation, we prove that M ( q , q ) ≥ q 2 - 1 2 by constructing trace-2 excluded subsets in S L ( 2 , F q ) , which highly raises the lower bound of M ( q ,  q ) given in Liu et al. (Quantum Inf Process 16(6):159, 2017 ) and Xu (Quantum Inf. Process 16(3):65, 2017 ).</description><identifier>ISSN: 1570-0755</identifier><identifier>EISSN: 1573-1332</identifier><identifier>DOI: 10.1007/s11128-019-2330-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Data Structures and Information Theory ; Fields (mathematics) ; Lower bounds ; Mathematical Physics ; Numbers ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Information Technology ; Quantum Physics ; Spintronics</subject><ispartof>Quantum information processing, 2019-07, Vol.18 (7), p.1-13, Article 213</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-354f516759b4ed8f8d7ff544a7ac3f2f556045233d80537a3c67ceb2c6bd81ba3</citedby><cites>FETCH-LOGICAL-c316t-354f516759b4ed8f8d7ff544a7ac3f2f556045233d80537a3c67ceb2c6bd81ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11128-019-2330-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11128-019-2330-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Xu, Dengming</creatorcontrib><title>Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases</title><title>Quantum information processing</title><addtitle>Quantum Inf Process</addtitle><description>Mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have a close relation with unitary 2-design and have attracted much attention in recent years. In the paper, we construct MUMEBs in C q ⊗ C q with q a power of an odd prime number. For this purpose, we introduce the notation of trace-2 excluded subset of the special linear group S L ( 2 , F q ) over the finite field F q and establish a relation between a trace-2 excluded subset and a set of MUMEBs in C q ⊗ C q . Under this relation, we prove that M ( q , q ) ≥ q 2 - 1 2 by constructing trace-2 excluded subsets in S L ( 2 , F q ) , which highly raises the lower bound of M ( q ,  q ) given in Liu et al. (Quantum Inf Process 16(6):159, 2017 ) and Xu (Quantum Inf. Process 16(3):65, 2017 ).</description><subject>Data Structures and Information Theory</subject><subject>Fields (mathematics)</subject><subject>Lower bounds</subject><subject>Mathematical Physics</subject><subject>Numbers</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Spintronics</subject><issn>1570-0755</issn><issn>1573-1332</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrf4AbwHP0Tw2ye5Rii8oeKnnkM2jbEl312Qj7b83dgVPnmaY7zEzHwC3BN8TjOVDIoTQGmHSIMoYRuIMLAiXDBHG6PmpxwhLzi_BVUo7jCkRtViAaRO1cYhCdzAhW2dhym1yU4KDh2l0ptMBhq53OsJtHPJYgC8Xoe_6bnKluGAT1L2F-zxlHcIR5r7tdCpOe33o9qeR6yfdb0OZtQVJ1-DC65DczW9dgo_np83qFa3fX95Wj2tkGBETYrzynAjJm7Zytva1ld7zqtJSG-ap51zgipd3bY05k5oZIY1rqRGtrUmr2RLczb5jHD6zS5PaDTn2ZaWilMq6aShuCovMLBOHlKLzaozl7nhUBKufcNUcrirhqp9wlSgaOmtS4fZbF_-c_xd9A-IMfgU</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Xu, Dengming</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190701</creationdate><title>Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases</title><author>Xu, Dengming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-354f516759b4ed8f8d7ff544a7ac3f2f556045233d80537a3c67ceb2c6bd81ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data Structures and Information Theory</topic><topic>Fields (mathematics)</topic><topic>Lower bounds</topic><topic>Mathematical Physics</topic><topic>Numbers</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Dengming</creatorcontrib><collection>CrossRef</collection><jtitle>Quantum information processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Dengming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases</atitle><jtitle>Quantum information processing</jtitle><stitle>Quantum Inf Process</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>18</volume><issue>7</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><artnum>213</artnum><issn>1570-0755</issn><eissn>1573-1332</eissn><abstract>Mutually unbiased maximally entangled bases (MUMEBs) in bipartite systems have a close relation with unitary 2-design and have attracted much attention in recent years. In the paper, we construct MUMEBs in C q ⊗ C q with q a power of an odd prime number. For this purpose, we introduce the notation of trace-2 excluded subset of the special linear group S L ( 2 , F q ) over the finite field F q and establish a relation between a trace-2 excluded subset and a set of MUMEBs in C q ⊗ C q . Under this relation, we prove that M ( q , q ) ≥ q 2 - 1 2 by constructing trace-2 excluded subsets in S L ( 2 , F q ) , which highly raises the lower bound of M ( q ,  q ) given in Liu et al. (Quantum Inf Process 16(6):159, 2017 ) and Xu (Quantum Inf. Process 16(3):65, 2017 ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11128-019-2330-6</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1570-0755
ispartof Quantum information processing, 2019-07, Vol.18 (7), p.1-13, Article 213
issn 1570-0755
1573-1332
language eng
recordid cdi_proquest_journals_2227899209
source SpringerLink Journals
subjects Data Structures and Information Theory
Fields (mathematics)
Lower bounds
Mathematical Physics
Numbers
Physics
Physics and Astronomy
Quantum Computing
Quantum Information Technology
Quantum Physics
Spintronics
title Trace-2 excluded subsets of special linear groups over finite fields and mutually unbiased maximally entangled bases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T13%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace-2%20excluded%20subsets%20of%20special%20linear%20groups%20over%20finite%20fields%20and%20mutually%20unbiased%20maximally%20entangled%20bases&rft.jtitle=Quantum%20information%20processing&rft.au=Xu,%20Dengming&rft.date=2019-07-01&rft.volume=18&rft.issue=7&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.artnum=213&rft.issn=1570-0755&rft.eissn=1573-1332&rft_id=info:doi/10.1007/s11128-019-2330-6&rft_dat=%3Cproquest_cross%3E2227899209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227899209&rft_id=info:pmid/&rfr_iscdi=true