Complex poles and spectral function of Yang-Mills theory

We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2019-04, Vol.99 (7), p.1, Article 074001
Hauptverfasser: Hayashi, Yui, Kondo, Kei-Ichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 1
container_title Physical review. D
container_volume 99
creator Hayashi, Yui
Kondo, Kei-Ichi
description We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mills model with one-loop quantum corrections, which is identified with a low-energy effective theory of the Yang-Mills theory, to show that the gluon propagator in this model has a pair of complex conjugate poles or "tachyonic" poles of multiplicity two, in accordance with the fact that the gluon field has a negative spectral function, while the ghost propagator has at most one "unphysical" pole. Finally, we discuss implications of these results for gluon confinement and other nonperturbative aspects of the Yang-Mills theory.
doi_str_mv 10.1103/PhysRevD.99.074001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227843524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227843524</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-a84c4552592d993a8c08c1be3013e2780910af8c1f648116fe08bb90ff5a9c5a3</originalsourceid><addsrcrecordid>eNo9kE1LAzEYhIMoWGr_gKeA513fN8nuJkdZPypUFNGDp5Cmid2y3azJVuy_d6XqaYZhmIGHkHOEHBH45dN6n57d53WuVA6VAMAjMmGiggyAqeN_j3BKZiltYLQlqApxQmQdtn3rvmgfWpeo6VY09c4O0bTU7zo7NKGjwdM3071nD03bJjqsXYj7M3LiTZvc7Fen5PX25qWeZ4vHu_v6apFZXsohM1JYURSsUGylFDfSgrS4dByQO1ZJUAjGj5EvhUQsvQO5XCrwvjDKFoZPycVht4_hY-fSoDdhF7vxUjM2DgheMDG22KFlY0gpOq_72GxN3GsE_QNJ_0HSSukDJP4NShxabA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227843524</pqid></control><display><type>article</type><title>Complex poles and spectral function of Yang-Mills theory</title><source>American Physical Society Journals</source><creator>Hayashi, Yui ; Kondo, Kei-Ichi</creator><creatorcontrib>Hayashi, Yui ; Kondo, Kei-Ichi</creatorcontrib><description>We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mills model with one-loop quantum corrections, which is identified with a low-energy effective theory of the Yang-Mills theory, to show that the gluon propagator in this model has a pair of complex conjugate poles or "tachyonic" poles of multiplicity two, in accordance with the fact that the gluon field has a negative spectral function, while the ghost propagator has at most one "unphysical" pole. Finally, we discuss implications of these results for gluon confinement and other nonperturbative aspects of the Yang-Mills theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.99.074001</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Deformation ; Poles ; Spectra ; Yang-Mills theory</subject><ispartof>Physical review. D, 2019-04, Vol.99 (7), p.1, Article 074001</ispartof><rights>Copyright American Physical Society Apr 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-a84c4552592d993a8c08c1be3013e2780910af8c1f648116fe08bb90ff5a9c5a3</citedby><cites>FETCH-LOGICAL-c368t-a84c4552592d993a8c08c1be3013e2780910af8c1f648116fe08bb90ff5a9c5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids></links><search><creatorcontrib>Hayashi, Yui</creatorcontrib><creatorcontrib>Kondo, Kei-Ichi</creatorcontrib><title>Complex poles and spectral function of Yang-Mills theory</title><title>Physical review. D</title><description>We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mills model with one-loop quantum corrections, which is identified with a low-energy effective theory of the Yang-Mills theory, to show that the gluon propagator in this model has a pair of complex conjugate poles or "tachyonic" poles of multiplicity two, in accordance with the fact that the gluon field has a negative spectral function, while the ghost propagator has at most one "unphysical" pole. Finally, we discuss implications of these results for gluon confinement and other nonperturbative aspects of the Yang-Mills theory.</description><subject>Deformation</subject><subject>Poles</subject><subject>Spectra</subject><subject>Yang-Mills theory</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEYhIMoWGr_gKeA513fN8nuJkdZPypUFNGDp5Cmid2y3azJVuy_d6XqaYZhmIGHkHOEHBH45dN6n57d53WuVA6VAMAjMmGiggyAqeN_j3BKZiltYLQlqApxQmQdtn3rvmgfWpeo6VY09c4O0bTU7zo7NKGjwdM3071nD03bJjqsXYj7M3LiTZvc7Fen5PX25qWeZ4vHu_v6apFZXsohM1JYURSsUGylFDfSgrS4dByQO1ZJUAjGj5EvhUQsvQO5XCrwvjDKFoZPycVht4_hY-fSoDdhF7vxUjM2DgheMDG22KFlY0gpOq_72GxN3GsE_QNJ_0HSSukDJP4NShxabA</recordid><startdate>201904</startdate><enddate>201904</enddate><creator>Hayashi, Yui</creator><creator>Kondo, Kei-Ichi</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201904</creationdate><title>Complex poles and spectral function of Yang-Mills theory</title><author>Hayashi, Yui ; Kondo, Kei-Ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-a84c4552592d993a8c08c1be3013e2780910af8c1f648116fe08bb90ff5a9c5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Deformation</topic><topic>Poles</topic><topic>Spectra</topic><topic>Yang-Mills theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hayashi, Yui</creatorcontrib><creatorcontrib>Kondo, Kei-Ichi</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hayashi, Yui</au><au>Kondo, Kei-Ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complex poles and spectral function of Yang-Mills theory</atitle><jtitle>Physical review. D</jtitle><date>2019-04</date><risdate>2019</risdate><volume>99</volume><issue>7</issue><spage>1</spage><pages>1-</pages><artnum>074001</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We derive general relationships between the number of complex poles of a propagator and the sign of the spectral function originating from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of the propagator. We apply this relation to the mass-deformed Yang-Mills model with one-loop quantum corrections, which is identified with a low-energy effective theory of the Yang-Mills theory, to show that the gluon propagator in this model has a pair of complex conjugate poles or "tachyonic" poles of multiplicity two, in accordance with the fact that the gluon field has a negative spectral function, while the ghost propagator has at most one "unphysical" pole. Finally, we discuss implications of these results for gluon confinement and other nonperturbative aspects of the Yang-Mills theory.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.99.074001</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2019-04, Vol.99 (7), p.1, Article 074001
issn 2470-0010
2470-0029
language eng
recordid cdi_proquest_journals_2227843524
source American Physical Society Journals
subjects Deformation
Poles
Spectra
Yang-Mills theory
title Complex poles and spectral function of Yang-Mills theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T20%3A17%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complex%20poles%20and%20spectral%20function%20of%20Yang-Mills%20theory&rft.jtitle=Physical%20review.%20D&rft.au=Hayashi,%20Yui&rft.date=2019-04&rft.volume=99&rft.issue=7&rft.spage=1&rft.pages=1-&rft.artnum=074001&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.99.074001&rft_dat=%3Cproquest_cross%3E2227843524%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227843524&rft_id=info:pmid/&rfr_iscdi=true