Interactions of HCl and H2O with the surface of PuO2

In order to explore the potential of heat treatment to decontaminate chloride-contaminated legacy plutonium dioxide (PuO2) powders from the UK stockpile, samples retrieved from storage have been heated in air from 400 to 950 °C. These samples also contain high levels of other adsorbed gases from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Nuclear Materials 2019-05, Vol.518, p.256-264
Hauptverfasser: Sutherland-Harper, Sophie, Livens, Francis, Pearce, Carolyn, Hobbs, Jeff, Orr, Robin, Taylor, Robin, Webb, Kevin, Kaltsoyannis, Nikolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 264
container_issue
container_start_page 256
container_title Journal of Nuclear Materials
container_volume 518
creator Sutherland-Harper, Sophie
Livens, Francis
Pearce, Carolyn
Hobbs, Jeff
Orr, Robin
Taylor, Robin
Webb, Kevin
Kaltsoyannis, Nikolas
description In order to explore the potential of heat treatment to decontaminate chloride-contaminated legacy plutonium dioxide (PuO2) powders from the UK stockpile, samples retrieved from storage have been heated in air from 400 to 950 °C. These samples also contain high levels of other adsorbed gases from the atmosphere, including water. The amounts of chloride remaining on the PuO2 particles after heat treatment (measured by a caustic leaching process) decrease whilst the amounts of volatilised chloride increase with increasing heat treatment temperature. Clear evidence for a non-leachable (strongly bound) chloride species on the PuO2 surface is found from the thermal treatments. The lattice parameter decreases with increasing heat treatment temperature, reflecting annealing of structural defects caused by over 35 years of radiation damage, with no change in the fcc Fm3¯m crystal structure. Heating chloride-contaminated PuO2 powder to ∼230 °C and cooling back to ambient temperature in a sealed vessel reveals the production of H2, He, NO and CO gases. Water adsorption/desorption behaviour with the untreated PuO2 powder is remarkably different than PuO2 which had previously been heat treated at 700 °C. From thermal treatments in open and sealed systems it is concluded that water and chloride co-adsorb and interact on the PuO2 surface and each affects the adsorption/desorption behaviour of the other. These data also support practical considerations for repackaging of chloride-contaminated PuO2 for long term safe and secure storage at Sellafield. [Display omitted] •First study of UK chloride-contaminated PuO2 retrieved from storage.•>700 °C needed to volatilise chloride efficiently.•Evidence of leachable and non-leachable species on PuO2 surface.•Unusual water adsorption behaviour on chloride-contaminated PuO2.
doi_str_mv 10.1016/j.jnucmat.2019.02.036
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_journals_2227837808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311518312054</els_id><sourcerecordid>2227837808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-eda70f5b2a37e1f3b21f20fe5d67fb5343d53ab85673a417ca008c2f15152573</originalsourceid><addsrcrecordid>eNqFkMFKAzEQhoMoWKuPICx63nWSbDbpSaSoLRTqofeQzSY0S5toklV8e3dp757mMN8__PMhdI-hwoCbp77q_aCPKlcE8KICUgFtLtAMC07LWhC4RDMAQkqKMbtGNyn1AMAWwGaoXvtsotLZBZ-KYIvV8lAo3xUrsi1-XN4XeW-KNESrtJn2H8OW3KIrqw7J3J3nHO3eXnfLVbnZvq-XL5tS0xrn0nSKg2UtUZQbbGlLsCVgDesabltGa9oxqlrBGk5VjblWAEITixlmhHE6Rw-nsyFlJ5N22ei9Dt4bnSVmFJhYjNDjCfqM4WswKcs-DNGPtSQhhAvKBYiRYidKx5BSNFZ-RndU8VdikJNE2cuzRDlJlEDkKHHMPZ9yZnzz25k41TBem87FqUUX3D8X_gD233nz</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227837808</pqid></control><display><type>article</type><title>Interactions of HCl and H2O with the surface of PuO2</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Sutherland-Harper, Sophie ; Livens, Francis ; Pearce, Carolyn ; Hobbs, Jeff ; Orr, Robin ; Taylor, Robin ; Webb, Kevin ; Kaltsoyannis, Nikolas</creator><creatorcontrib>Sutherland-Harper, Sophie ; Livens, Francis ; Pearce, Carolyn ; Hobbs, Jeff ; Orr, Robin ; Taylor, Robin ; Webb, Kevin ; Kaltsoyannis, Nikolas ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>In order to explore the potential of heat treatment to decontaminate chloride-contaminated legacy plutonium dioxide (PuO2) powders from the UK stockpile, samples retrieved from storage have been heated in air from 400 to 950 °C. These samples also contain high levels of other adsorbed gases from the atmosphere, including water. The amounts of chloride remaining on the PuO2 particles after heat treatment (measured by a caustic leaching process) decrease whilst the amounts of volatilised chloride increase with increasing heat treatment temperature. Clear evidence for a non-leachable (strongly bound) chloride species on the PuO2 surface is found from the thermal treatments. The lattice parameter decreases with increasing heat treatment temperature, reflecting annealing of structural defects caused by over 35 years of radiation damage, with no change in the fcc Fm3¯m crystal structure. Heating chloride-contaminated PuO2 powder to ∼230 °C and cooling back to ambient temperature in a sealed vessel reveals the production of H2, He, NO and CO gases. Water adsorption/desorption behaviour with the untreated PuO2 powder is remarkably different than PuO2 which had previously been heat treated at 700 °C. From thermal treatments in open and sealed systems it is concluded that water and chloride co-adsorb and interact on the PuO2 surface and each affects the adsorption/desorption behaviour of the other. These data also support practical considerations for repackaging of chloride-contaminated PuO2 for long term safe and secure storage at Sellafield. [Display omitted] •First study of UK chloride-contaminated PuO2 retrieved from storage.•&gt;700 °C needed to volatilise chloride efficiently.•Evidence of leachable and non-leachable species on PuO2 surface.•Unusual water adsorption behaviour on chloride-contaminated PuO2.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2019.02.036</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adsorbed water ; Adsorption ; Ambient temperature ; Caustic leaching ; Chloride ; Chlorides ; Contamination ; Crystal defects ; Crystal structure ; Decontamination ; Defect annealing ; Desorption ; Gases ; Heat treating ; Heat treatment ; Leaching ; Plutonium ; Plutonium dioxide ; Powder ; Radiation ; Radiation damage ; Stockpiling ; Storage ; Structural damage ; Surface chemistry ; Temperature effects ; Thermal treatment ; Water</subject><ispartof>Journal of Nuclear Materials, 2019-05, Vol.518, p.256-264</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-eda70f5b2a37e1f3b21f20fe5d67fb5343d53ab85673a417ca008c2f15152573</citedby><cites>FETCH-LOGICAL-c341t-eda70f5b2a37e1f3b21f20fe5d67fb5343d53ab85673a417ca008c2f15152573</cites><orcidid>0000-0003-3098-1615 ; 0000-0002-3685-277X ; 0000-0003-0293-5742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2019.02.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,881,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1530589$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sutherland-Harper, Sophie</creatorcontrib><creatorcontrib>Livens, Francis</creatorcontrib><creatorcontrib>Pearce, Carolyn</creatorcontrib><creatorcontrib>Hobbs, Jeff</creatorcontrib><creatorcontrib>Orr, Robin</creatorcontrib><creatorcontrib>Taylor, Robin</creatorcontrib><creatorcontrib>Webb, Kevin</creatorcontrib><creatorcontrib>Kaltsoyannis, Nikolas</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Interactions of HCl and H2O with the surface of PuO2</title><title>Journal of Nuclear Materials</title><description>In order to explore the potential of heat treatment to decontaminate chloride-contaminated legacy plutonium dioxide (PuO2) powders from the UK stockpile, samples retrieved from storage have been heated in air from 400 to 950 °C. These samples also contain high levels of other adsorbed gases from the atmosphere, including water. The amounts of chloride remaining on the PuO2 particles after heat treatment (measured by a caustic leaching process) decrease whilst the amounts of volatilised chloride increase with increasing heat treatment temperature. Clear evidence for a non-leachable (strongly bound) chloride species on the PuO2 surface is found from the thermal treatments. The lattice parameter decreases with increasing heat treatment temperature, reflecting annealing of structural defects caused by over 35 years of radiation damage, with no change in the fcc Fm3¯m crystal structure. Heating chloride-contaminated PuO2 powder to ∼230 °C and cooling back to ambient temperature in a sealed vessel reveals the production of H2, He, NO and CO gases. Water adsorption/desorption behaviour with the untreated PuO2 powder is remarkably different than PuO2 which had previously been heat treated at 700 °C. From thermal treatments in open and sealed systems it is concluded that water and chloride co-adsorb and interact on the PuO2 surface and each affects the adsorption/desorption behaviour of the other. These data also support practical considerations for repackaging of chloride-contaminated PuO2 for long term safe and secure storage at Sellafield. [Display omitted] •First study of UK chloride-contaminated PuO2 retrieved from storage.•&gt;700 °C needed to volatilise chloride efficiently.•Evidence of leachable and non-leachable species on PuO2 surface.•Unusual water adsorption behaviour on chloride-contaminated PuO2.</description><subject>Adsorbed water</subject><subject>Adsorption</subject><subject>Ambient temperature</subject><subject>Caustic leaching</subject><subject>Chloride</subject><subject>Chlorides</subject><subject>Contamination</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Decontamination</subject><subject>Defect annealing</subject><subject>Desorption</subject><subject>Gases</subject><subject>Heat treating</subject><subject>Heat treatment</subject><subject>Leaching</subject><subject>Plutonium</subject><subject>Plutonium dioxide</subject><subject>Powder</subject><subject>Radiation</subject><subject>Radiation damage</subject><subject>Stockpiling</subject><subject>Storage</subject><subject>Structural damage</subject><subject>Surface chemistry</subject><subject>Temperature effects</subject><subject>Thermal treatment</subject><subject>Water</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKAzEQhoMoWKuPICx63nWSbDbpSaSoLRTqofeQzSY0S5toklV8e3dp757mMN8__PMhdI-hwoCbp77q_aCPKlcE8KICUgFtLtAMC07LWhC4RDMAQkqKMbtGNyn1AMAWwGaoXvtsotLZBZ-KYIvV8lAo3xUrsi1-XN4XeW-KNESrtJn2H8OW3KIrqw7J3J3nHO3eXnfLVbnZvq-XL5tS0xrn0nSKg2UtUZQbbGlLsCVgDesabltGa9oxqlrBGk5VjblWAEITixlmhHE6Rw-nsyFlJ5N22ei9Dt4bnSVmFJhYjNDjCfqM4WswKcs-DNGPtSQhhAvKBYiRYidKx5BSNFZ-RndU8VdikJNE2cuzRDlJlEDkKHHMPZ9yZnzz25k41TBem87FqUUX3D8X_gD233nz</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Sutherland-Harper, Sophie</creator><creator>Livens, Francis</creator><creator>Pearce, Carolyn</creator><creator>Hobbs, Jeff</creator><creator>Orr, Robin</creator><creator>Taylor, Robin</creator><creator>Webb, Kevin</creator><creator>Kaltsoyannis, Nikolas</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3098-1615</orcidid><orcidid>https://orcid.org/0000-0002-3685-277X</orcidid><orcidid>https://orcid.org/0000-0003-0293-5742</orcidid></search><sort><creationdate>20190501</creationdate><title>Interactions of HCl and H2O with the surface of PuO2</title><author>Sutherland-Harper, Sophie ; Livens, Francis ; Pearce, Carolyn ; Hobbs, Jeff ; Orr, Robin ; Taylor, Robin ; Webb, Kevin ; Kaltsoyannis, Nikolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-eda70f5b2a37e1f3b21f20fe5d67fb5343d53ab85673a417ca008c2f15152573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adsorbed water</topic><topic>Adsorption</topic><topic>Ambient temperature</topic><topic>Caustic leaching</topic><topic>Chloride</topic><topic>Chlorides</topic><topic>Contamination</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Decontamination</topic><topic>Defect annealing</topic><topic>Desorption</topic><topic>Gases</topic><topic>Heat treating</topic><topic>Heat treatment</topic><topic>Leaching</topic><topic>Plutonium</topic><topic>Plutonium dioxide</topic><topic>Powder</topic><topic>Radiation</topic><topic>Radiation damage</topic><topic>Stockpiling</topic><topic>Storage</topic><topic>Structural damage</topic><topic>Surface chemistry</topic><topic>Temperature effects</topic><topic>Thermal treatment</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sutherland-Harper, Sophie</creatorcontrib><creatorcontrib>Livens, Francis</creatorcontrib><creatorcontrib>Pearce, Carolyn</creatorcontrib><creatorcontrib>Hobbs, Jeff</creatorcontrib><creatorcontrib>Orr, Robin</creatorcontrib><creatorcontrib>Taylor, Robin</creatorcontrib><creatorcontrib>Webb, Kevin</creatorcontrib><creatorcontrib>Kaltsoyannis, Nikolas</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of Nuclear Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sutherland-Harper, Sophie</au><au>Livens, Francis</au><au>Pearce, Carolyn</au><au>Hobbs, Jeff</au><au>Orr, Robin</au><au>Taylor, Robin</au><au>Webb, Kevin</au><au>Kaltsoyannis, Nikolas</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactions of HCl and H2O with the surface of PuO2</atitle><jtitle>Journal of Nuclear Materials</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>518</volume><spage>256</spage><epage>264</epage><pages>256-264</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>In order to explore the potential of heat treatment to decontaminate chloride-contaminated legacy plutonium dioxide (PuO2) powders from the UK stockpile, samples retrieved from storage have been heated in air from 400 to 950 °C. These samples also contain high levels of other adsorbed gases from the atmosphere, including water. The amounts of chloride remaining on the PuO2 particles after heat treatment (measured by a caustic leaching process) decrease whilst the amounts of volatilised chloride increase with increasing heat treatment temperature. Clear evidence for a non-leachable (strongly bound) chloride species on the PuO2 surface is found from the thermal treatments. The lattice parameter decreases with increasing heat treatment temperature, reflecting annealing of structural defects caused by over 35 years of radiation damage, with no change in the fcc Fm3¯m crystal structure. Heating chloride-contaminated PuO2 powder to ∼230 °C and cooling back to ambient temperature in a sealed vessel reveals the production of H2, He, NO and CO gases. Water adsorption/desorption behaviour with the untreated PuO2 powder is remarkably different than PuO2 which had previously been heat treated at 700 °C. From thermal treatments in open and sealed systems it is concluded that water and chloride co-adsorb and interact on the PuO2 surface and each affects the adsorption/desorption behaviour of the other. These data also support practical considerations for repackaging of chloride-contaminated PuO2 for long term safe and secure storage at Sellafield. [Display omitted] •First study of UK chloride-contaminated PuO2 retrieved from storage.•&gt;700 °C needed to volatilise chloride efficiently.•Evidence of leachable and non-leachable species on PuO2 surface.•Unusual water adsorption behaviour on chloride-contaminated PuO2.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2019.02.036</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3098-1615</orcidid><orcidid>https://orcid.org/0000-0002-3685-277X</orcidid><orcidid>https://orcid.org/0000-0003-0293-5742</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of Nuclear Materials, 2019-05, Vol.518, p.256-264
issn 0022-3115
1873-4820
language eng
recordid cdi_proquest_journals_2227837808
source Elsevier ScienceDirect Journals Complete
subjects Adsorbed water
Adsorption
Ambient temperature
Caustic leaching
Chloride
Chlorides
Contamination
Crystal defects
Crystal structure
Decontamination
Defect annealing
Desorption
Gases
Heat treating
Heat treatment
Leaching
Plutonium
Plutonium dioxide
Powder
Radiation
Radiation damage
Stockpiling
Storage
Structural damage
Surface chemistry
Temperature effects
Thermal treatment
Water
title Interactions of HCl and H2O with the surface of PuO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T08%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactions%20of%20HCl%20and%20H2O%20with%20the%20surface%20of%20PuO2&rft.jtitle=Journal%20of%20Nuclear%20Materials&rft.au=Sutherland-Harper,%20Sophie&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2019-05-01&rft.volume=518&rft.spage=256&rft.epage=264&rft.pages=256-264&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2019.02.036&rft_dat=%3Cproquest_osti_%3E2227837808%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227837808&rft_id=info:pmid/&rft_els_id=S0022311518312054&rfr_iscdi=true