Numerical modeling of steel–concrete composite structures
Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete...
Gespeichert in:
Veröffentlicht in: | Structural concrete : journal of the FIB 2018-12, Vol.19 (6), p.1727-1739 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1739 |
---|---|
container_issue | 6 |
container_start_page | 1727 |
container_title | Structural concrete : journal of the FIB |
container_volume | 19 |
creator | Qiang, Zhang Yaozhuang, Li Kolozvari, Kristijan |
description | Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability. |
doi_str_mv | 10.1002/suco.201700094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227834555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227834555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFavngOeU2c2u9kET1K0CsUetOdls5lKStKtuwnSm-_gG_okbqno0cvMz_D9M8PP2CXCBAH4dRism3BABQClOGIjVBJTlYviOGqRi1SgUqfsLIR15KOWI3bzNHTkG2vapHM1tc3mNXGrJPRE7dfHp3Ub66mnxLpu60ITVej9YPvBUzhnJyvTBrr46WO2vL97mT6k88XscXo7T22GSqRUYm5ExTlRfC6HUiJXZABsnBiFGRa8BpDKWEBhqDJVrFiWFRZQQZ2N2dVh79a7t4FCr9du8Jt4UnPOVZEJKWWkJgfKeheCp5Xe-qYzfqcR9D4gvQ9I_wYUDeXB8N60tPuH1s_L6eLP-w2UXmsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227834555</pqid></control><display><type>article</type><title>Numerical modeling of steel–concrete composite structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</creator><creatorcontrib>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</creatorcontrib><description>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.201700094</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>ABAQUS ; Aerospace industry ; Composite structures ; Computer simulation ; Concrete ; Constitutive models ; fiber beam element ; Finite element method ; Horizontal loads ; Mathematical models ; Mechanical properties ; Model accuracy ; PQ‐fiber model, OpenSees program ; Seismic engineering ; Seismic response ; Steel columns ; Steel plates ; Steel structures ; Steel tubes ; steel–concrete composite structures ; Structural steels ; UMAT ; Vertical loads</subject><ispartof>Structural concrete : journal of the FIB, 2018-12, Vol.19 (6), p.1727-1739</ispartof><rights>2018 . International Federation for Structural Concrete</rights><rights>2018 fib. International Federation for Structural Concrete</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</citedby><cites>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</cites><orcidid>0000-0003-4258-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.201700094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.201700094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qiang, Zhang</creatorcontrib><creatorcontrib>Yaozhuang, Li</creatorcontrib><creatorcontrib>Kolozvari, Kristijan</creatorcontrib><title>Numerical modeling of steel–concrete composite structures</title><title>Structural concrete : journal of the FIB</title><description>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</description><subject>ABAQUS</subject><subject>Aerospace industry</subject><subject>Composite structures</subject><subject>Computer simulation</subject><subject>Concrete</subject><subject>Constitutive models</subject><subject>fiber beam element</subject><subject>Finite element method</subject><subject>Horizontal loads</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>PQ‐fiber model, OpenSees program</subject><subject>Seismic engineering</subject><subject>Seismic response</subject><subject>Steel columns</subject><subject>Steel plates</subject><subject>Steel structures</subject><subject>Steel tubes</subject><subject>steel–concrete composite structures</subject><subject>Structural steels</subject><subject>UMAT</subject><subject>Vertical loads</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFavngOeU2c2u9kET1K0CsUetOdls5lKStKtuwnSm-_gG_okbqno0cvMz_D9M8PP2CXCBAH4dRism3BABQClOGIjVBJTlYviOGqRi1SgUqfsLIR15KOWI3bzNHTkG2vapHM1tc3mNXGrJPRE7dfHp3Ub66mnxLpu60ITVej9YPvBUzhnJyvTBrr46WO2vL97mT6k88XscXo7T22GSqRUYm5ExTlRfC6HUiJXZABsnBiFGRa8BpDKWEBhqDJVrFiWFRZQQZ2N2dVh79a7t4FCr9du8Jt4UnPOVZEJKWWkJgfKeheCp5Xe-qYzfqcR9D4gvQ9I_wYUDeXB8N60tPuH1s_L6eLP-w2UXmsC</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Qiang, Zhang</creator><creator>Yaozhuang, Li</creator><creator>Kolozvari, Kristijan</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4258-3833</orcidid></search><sort><creationdate>201812</creationdate><title>Numerical modeling of steel–concrete composite structures</title><author>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ABAQUS</topic><topic>Aerospace industry</topic><topic>Composite structures</topic><topic>Computer simulation</topic><topic>Concrete</topic><topic>Constitutive models</topic><topic>fiber beam element</topic><topic>Finite element method</topic><topic>Horizontal loads</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>PQ‐fiber model, OpenSees program</topic><topic>Seismic engineering</topic><topic>Seismic response</topic><topic>Steel columns</topic><topic>Steel plates</topic><topic>Steel structures</topic><topic>Steel tubes</topic><topic>steel–concrete composite structures</topic><topic>Structural steels</topic><topic>UMAT</topic><topic>Vertical loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Zhang</creatorcontrib><creatorcontrib>Yaozhuang, Li</creatorcontrib><creatorcontrib>Kolozvari, Kristijan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Zhang</au><au>Yaozhuang, Li</au><au>Kolozvari, Kristijan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of steel–concrete composite structures</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2018-12</date><risdate>2018</risdate><volume>19</volume><issue>6</issue><spage>1727</spage><epage>1739</epage><pages>1727-1739</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/suco.201700094</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4258-3833</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4177 |
ispartof | Structural concrete : journal of the FIB, 2018-12, Vol.19 (6), p.1727-1739 |
issn | 1464-4177 1751-7648 |
language | eng |
recordid | cdi_proquest_journals_2227834555 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | ABAQUS Aerospace industry Composite structures Computer simulation Concrete Constitutive models fiber beam element Finite element method Horizontal loads Mathematical models Mechanical properties Model accuracy PQ‐fiber model, OpenSees program Seismic engineering Seismic response Steel columns Steel plates Steel structures Steel tubes steel–concrete composite structures Structural steels UMAT Vertical loads |
title | Numerical modeling of steel–concrete composite structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20steel%E2%80%93concrete%20composite%20structures&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Qiang,%20Zhang&rft.date=2018-12&rft.volume=19&rft.issue=6&rft.spage=1727&rft.epage=1739&rft.pages=1727-1739&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.201700094&rft_dat=%3Cproquest_cross%3E2227834555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227834555&rft_id=info:pmid/&rfr_iscdi=true |