Numerical modeling of steel–concrete composite structures

Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Structural concrete : journal of the FIB 2018-12, Vol.19 (6), p.1727-1739
Hauptverfasser: Qiang, Zhang, Yaozhuang, Li, Kolozvari, Kristijan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1739
container_issue 6
container_start_page 1727
container_title Structural concrete : journal of the FIB
container_volume 19
creator Qiang, Zhang
Yaozhuang, Li
Kolozvari, Kristijan
description Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.
doi_str_mv 10.1002/suco.201700094
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227834555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227834555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</originalsourceid><addsrcrecordid>eNqFkMFKw0AQhhdRsFavngOeU2c2u9kET1K0CsUetOdls5lKStKtuwnSm-_gG_okbqno0cvMz_D9M8PP2CXCBAH4dRism3BABQClOGIjVBJTlYviOGqRi1SgUqfsLIR15KOWI3bzNHTkG2vapHM1tc3mNXGrJPRE7dfHp3Ub66mnxLpu60ITVej9YPvBUzhnJyvTBrr46WO2vL97mT6k88XscXo7T22GSqRUYm5ExTlRfC6HUiJXZABsnBiFGRa8BpDKWEBhqDJVrFiWFRZQQZ2N2dVh79a7t4FCr9du8Jt4UnPOVZEJKWWkJgfKeheCp5Xe-qYzfqcR9D4gvQ9I_wYUDeXB8N60tPuH1s_L6eLP-w2UXmsC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227834555</pqid></control><display><type>article</type><title>Numerical modeling of steel–concrete composite structures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</creator><creatorcontrib>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</creatorcontrib><description>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.201700094</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH &amp; Co. KGaA</publisher><subject>ABAQUS ; Aerospace industry ; Composite structures ; Computer simulation ; Concrete ; Constitutive models ; fiber beam element ; Finite element method ; Horizontal loads ; Mathematical models ; Mechanical properties ; Model accuracy ; PQ‐fiber model, OpenSees program ; Seismic engineering ; Seismic response ; Steel columns ; Steel plates ; Steel structures ; Steel tubes ; steel–concrete composite structures ; Structural steels ; UMAT ; Vertical loads</subject><ispartof>Structural concrete : journal of the FIB, 2018-12, Vol.19 (6), p.1727-1739</ispartof><rights>2018 . International Federation for Structural Concrete</rights><rights>2018 fib. International Federation for Structural Concrete</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</citedby><cites>FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</cites><orcidid>0000-0003-4258-3833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.201700094$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.201700094$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Qiang, Zhang</creatorcontrib><creatorcontrib>Yaozhuang, Li</creatorcontrib><creatorcontrib>Kolozvari, Kristijan</creatorcontrib><title>Numerical modeling of steel–concrete composite structures</title><title>Structural concrete : journal of the FIB</title><description>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</description><subject>ABAQUS</subject><subject>Aerospace industry</subject><subject>Composite structures</subject><subject>Computer simulation</subject><subject>Concrete</subject><subject>Constitutive models</subject><subject>fiber beam element</subject><subject>Finite element method</subject><subject>Horizontal loads</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>PQ‐fiber model, OpenSees program</subject><subject>Seismic engineering</subject><subject>Seismic response</subject><subject>Steel columns</subject><subject>Steel plates</subject><subject>Steel structures</subject><subject>Steel tubes</subject><subject>steel–concrete composite structures</subject><subject>Structural steels</subject><subject>UMAT</subject><subject>Vertical loads</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMFKw0AQhhdRsFavngOeU2c2u9kET1K0CsUetOdls5lKStKtuwnSm-_gG_okbqno0cvMz_D9M8PP2CXCBAH4dRism3BABQClOGIjVBJTlYviOGqRi1SgUqfsLIR15KOWI3bzNHTkG2vapHM1tc3mNXGrJPRE7dfHp3Ub66mnxLpu60ITVej9YPvBUzhnJyvTBrr46WO2vL97mT6k88XscXo7T22GSqRUYm5ExTlRfC6HUiJXZABsnBiFGRa8BpDKWEBhqDJVrFiWFRZQQZ2N2dVh79a7t4FCr9du8Jt4UnPOVZEJKWWkJgfKeheCp5Xe-qYzfqcR9D4gvQ9I_wYUDeXB8N60tPuH1s_L6eLP-w2UXmsC</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Qiang, Zhang</creator><creator>Yaozhuang, Li</creator><creator>Kolozvari, Kristijan</creator><general>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4258-3833</orcidid></search><sort><creationdate>201812</creationdate><title>Numerical modeling of steel–concrete composite structures</title><author>Qiang, Zhang ; Yaozhuang, Li ; Kolozvari, Kristijan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-e916a4b22ee0176095127ea00c2eea713182d0057ac014aebab4ae199b180b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ABAQUS</topic><topic>Aerospace industry</topic><topic>Composite structures</topic><topic>Computer simulation</topic><topic>Concrete</topic><topic>Constitutive models</topic><topic>fiber beam element</topic><topic>Finite element method</topic><topic>Horizontal loads</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>PQ‐fiber model, OpenSees program</topic><topic>Seismic engineering</topic><topic>Seismic response</topic><topic>Steel columns</topic><topic>Steel plates</topic><topic>Steel structures</topic><topic>Steel tubes</topic><topic>steel–concrete composite structures</topic><topic>Structural steels</topic><topic>UMAT</topic><topic>Vertical loads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiang, Zhang</creatorcontrib><creatorcontrib>Yaozhuang, Li</creatorcontrib><creatorcontrib>Kolozvari, Kristijan</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiang, Zhang</au><au>Yaozhuang, Li</au><au>Kolozvari, Kristijan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of steel–concrete composite structures</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2018-12</date><risdate>2018</risdate><volume>19</volume><issue>6</issue><spage>1727</spage><epage>1739</epage><pages>1727-1739</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Steel–concrete composite structures are diverse in form and are widely used in industrial and civil infrastructures. To effectively simulate nonlinear behavior of composite structures under vertical load and horizontal earthquake action, a group of material constitutive models suitable for concrete in composite structures, concrete‐filled steel tubes that consider restraining effect, steel bars, and steel plates are developed via the User subroutine to define a material's mechanical behavior (UMAT) of a large‐scale finite element program ABAQUS based on extensive research. Based on analytical results, a section analysis method is proposed for round‐end sections, which is integrated into a fiber beam‐column model of steel–concrete composite structures in combination with the existing fiber discretization program. To verify the accuracy and applicability of the proposed fiber beam‐column model, trial computation is performed with the present fiber model versus PQ‐fiber model and OpenSees fiber beam‐column element. Comparison with extensive tests shows that the present fiber model has good accuracy and applicability.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH &amp; Co. KGaA</pub><doi>10.1002/suco.201700094</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4258-3833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1464-4177
ispartof Structural concrete : journal of the FIB, 2018-12, Vol.19 (6), p.1727-1739
issn 1464-4177
1751-7648
language eng
recordid cdi_proquest_journals_2227834555
source Wiley Online Library Journals Frontfile Complete
subjects ABAQUS
Aerospace industry
Composite structures
Computer simulation
Concrete
Constitutive models
fiber beam element
Finite element method
Horizontal loads
Mathematical models
Mechanical properties
Model accuracy
PQ‐fiber model, OpenSees program
Seismic engineering
Seismic response
Steel columns
Steel plates
Steel structures
Steel tubes
steel–concrete composite structures
Structural steels
UMAT
Vertical loads
title Numerical modeling of steel–concrete composite structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T23%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20steel%E2%80%93concrete%20composite%20structures&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Qiang,%20Zhang&rft.date=2018-12&rft.volume=19&rft.issue=6&rft.spage=1727&rft.epage=1739&rft.pages=1727-1739&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.201700094&rft_dat=%3Cproquest_cross%3E2227834555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227834555&rft_id=info:pmid/&rfr_iscdi=true