Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site

Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Stochastic environmental research and risk assessment 2008-01, Vol.22 (1), p.17-31
Hauptverfasser: Volkova, E., Iooss, B., Van Dorpe, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 17
container_title Stochastic environmental research and risk assessment
container_volume 22
creator Volkova, E.
Iooss, B.
Van Dorpe, F.
description Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.
doi_str_mv 10.1007/s00477-006-0093-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_222771992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1385797481</sourcerecordid><originalsourceid>FETCH-LOGICAL-a404t-212580f24feef688abf6579629f63dc8bd4c0c3022162c1cb84cd5247ce491713</originalsourceid><addsrcrecordid>eNp1kM9KAzEQxhdRsNQ-gLfgfTXJZv_kKMV_KAhFzyGbTdrI7qZmssreevUd9OX6JKZU9ORhmBn4ft8wX5KcEnxOMC4vAGNWlinGRSyepeNBMiEsK9KM5vzwd2b4OJkB2DoyecY5wZPk46Z1tWwR6B5ssG82jEj2sh3BAjLOI4n6odPeqijqXKNb5AzysrGuH1RrG406u_QyxB0Z7zoUVhotFnO03XzeD16tZHBv6K6HYMMQ9HbztaPfJQSNGgtrB7vrNuiT5MjIFvTsp0-T5-urp_lt-vB4cze_fEglwyyklNC8woYyo7UpqkrWpshLXlBuiqxRVd0whVWGKSUFVUTVFVNNTlmpNOOkJNk0Odv7rr17HTQE8eIGH18GQSktS8I5jSKyFynvALw2Yu1tJ_0oCBa7zMU-cxEzF7vMxRgZumcgavul9n_G_0PfE2eI_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222771992</pqid></control><display><type>article</type><title>Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site</title><source>SpringerLink Journals - AutoHoldings</source><creator>Volkova, E. ; Iooss, B. ; Van Dorpe, F.</creator><creatorcontrib>Volkova, E. ; Iooss, B. ; Van Dorpe, F.</creatorcontrib><description>Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-006-0093-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aquatic Pollution ; Atoms &amp; subatomic particles ; Chemistry and Earth Sciences ; Computational Intelligence ; Computer Science ; Contaminants ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental assessment ; Environmental impact ; Environmental risk ; Groundwater ; Groundwater pollution ; Hazardous materials ; Infiltration rate ; Math. Appl. in Environmental Science ; Mathematical models ; Monte Carlo simulation ; Observation wells ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Radioactive waste disposal ; Radioactive wastes ; Radioisotopes ; Risk ; Sensitivity analysis ; Statistical analysis ; Statistics for Engineering ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2008-01, Vol.22 (1), p.17-31</ispartof><rights>Springer-Verlag 2006</rights><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a404t-212580f24feef688abf6579629f63dc8bd4c0c3022162c1cb84cd5247ce491713</citedby><cites>FETCH-LOGICAL-a404t-212580f24feef688abf6579629f63dc8bd4c0c3022162c1cb84cd5247ce491713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-006-0093-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-006-0093-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Volkova, E.</creatorcontrib><creatorcontrib>Iooss, B.</creatorcontrib><creatorcontrib>Van Dorpe, F.</creatorcontrib><title>Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.</description><subject>Aquatic Pollution</subject><subject>Atoms &amp; subatomic particles</subject><subject>Chemistry and Earth Sciences</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Contaminants</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Environmental risk</subject><subject>Groundwater</subject><subject>Groundwater pollution</subject><subject>Hazardous materials</subject><subject>Infiltration rate</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Observation wells</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Radioactive waste disposal</subject><subject>Radioactive wastes</subject><subject>Radioisotopes</subject><subject>Risk</subject><subject>Sensitivity analysis</subject><subject>Statistical analysis</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9KAzEQxhdRsNQ-gLfgfTXJZv_kKMV_KAhFzyGbTdrI7qZmssreevUd9OX6JKZU9ORhmBn4ft8wX5KcEnxOMC4vAGNWlinGRSyepeNBMiEsK9KM5vzwd2b4OJkB2DoyecY5wZPk46Z1tWwR6B5ssG82jEj2sh3BAjLOI4n6odPeqijqXKNb5AzysrGuH1RrG406u_QyxB0Z7zoUVhotFnO03XzeD16tZHBv6K6HYMMQ9HbztaPfJQSNGgtrB7vrNuiT5MjIFvTsp0-T5-urp_lt-vB4cze_fEglwyyklNC8woYyo7UpqkrWpshLXlBuiqxRVd0whVWGKSUFVUTVFVNNTlmpNOOkJNk0Odv7rr17HTQE8eIGH18GQSktS8I5jSKyFynvALw2Yu1tJ_0oCBa7zMU-cxEzF7vMxRgZumcgavul9n_G_0PfE2eI_w</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Volkova, E.</creator><creator>Iooss, B.</creator><creator>Van Dorpe, F.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope></search><sort><creationdate>20080101</creationdate><title>Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site</title><author>Volkova, E. ; Iooss, B. ; Van Dorpe, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a404t-212580f24feef688abf6579629f63dc8bd4c0c3022162c1cb84cd5247ce491713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aquatic Pollution</topic><topic>Atoms &amp; subatomic particles</topic><topic>Chemistry and Earth Sciences</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Contaminants</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Environmental risk</topic><topic>Groundwater</topic><topic>Groundwater pollution</topic><topic>Hazardous materials</topic><topic>Infiltration rate</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Observation wells</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Radioactive waste disposal</topic><topic>Radioactive wastes</topic><topic>Radioisotopes</topic><topic>Risk</topic><topic>Sensitivity analysis</topic><topic>Statistical analysis</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volkova, E.</creatorcontrib><creatorcontrib>Iooss, B.</creatorcontrib><creatorcontrib>Van Dorpe, F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volkova, E.</au><au>Iooss, B.</au><au>Van Dorpe, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2008-01-01</date><risdate>2008</risdate><volume>22</volume><issue>1</issue><spage>17</spage><epage>31</epage><pages>17-31</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Today, in different countries, there exist sites with contaminated groundwater formed as a result of inappropriate handling or disposal of hazardous materials or wastes. Numerical modeling of such sites is an important tool for a correct prediction of contamination plume spreading and an assessment of environmental risks associated with the site. Many uncertainties are associated with a part of the parameters and the initial conditions of such environmental numerical models. Statistical techniques are useful to deal with these uncertainties. This paper describes the methods of uncertainty propagation and global sensitivity analysis that are applied to a numerical model of radionuclide migration in a sandy aquifer in the area of the RRC “Kurchatov Institute” radwaste disposal site in Moscow, Russia. We consider 20 uncertain input parameters of the model and 20 output variables (contaminant concentration in the observation wells predicted by the model for the end of 2010). Monte Carlo simulations allow calculating uncertainty in the output values and analyzing the linearity and the monotony of the relations between input and output variables. For the non monotonic relations, sensitivity analyses are classically done with the Sobol sensitivity indices. The originality of this study is the use of modern surrogate models (called response surfaces), the boosting regression trees, constructed for each output variable, to calculate the Sobol indices by the Monte Carlo method. It is thus shown that the most influential parameters of the model are distribution coefficients and infiltration rate in the zone of strong pipe leaks on the site. Improvement of these parameters would considerably reduce the model prediction uncertainty.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00477-006-0093-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1436-3240
ispartof Stochastic environmental research and risk assessment, 2008-01, Vol.22 (1), p.17-31
issn 1436-3240
1436-3259
language eng
recordid cdi_proquest_journals_222771992
source SpringerLink Journals - AutoHoldings
subjects Aquatic Pollution
Atoms & subatomic particles
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Contaminants
Earth and Environmental Science
Earth Sciences
Environment
Environmental assessment
Environmental impact
Environmental risk
Groundwater
Groundwater pollution
Hazardous materials
Infiltration rate
Math. Appl. in Environmental Science
Mathematical models
Monte Carlo simulation
Observation wells
Original Paper
Physics
Probability Theory and Stochastic Processes
Radioactive waste disposal
Radioactive wastes
Radioisotopes
Risk
Sensitivity analysis
Statistical analysis
Statistics for Engineering
Waste Water Technology
Water Management
Water Pollution Control
title Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A06%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20sensitivity%20analysis%20for%20a%20numerical%20model%20of%20radionuclide%20migration%20from%20the%20RRC%20%E2%80%9CKurchatov%20Institute%E2%80%9D%20radwaste%20disposal%20site&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Volkova,%20E.&rft.date=2008-01-01&rft.volume=22&rft.issue=1&rft.spage=17&rft.epage=31&rft.pages=17-31&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-006-0093-y&rft_dat=%3Cproquest_cross%3E1385797481%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222771992&rft_id=info:pmid/&rfr_iscdi=true