Peristaltic flow of a Johnson-Segalman fluid through a deformable tube
To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and sm...
Gespeichert in:
Veröffentlicht in: | Theoretical and computational fluid dynamics 2007-09, Vol.21 (5), p.369-380 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 5 |
container_start_page | 369 |
container_title | Theoretical and computational fluid dynamics |
container_volume | 21 |
creator | Wang, Yongqi Hayat, Tasawar Hutter, Kolumban |
description | To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest. [PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00162-007-0054-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_222764849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1315753241</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-699e687bc57462ba96d3173df5be550a6fc01c3aed87ab17261e0de41790c2303</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOKc_wLviffTku7mU4ZwyUFCvQ5oma0fXzKRF_Pe2zIvDeeF9OAcehG4J3BMA9ZABiKR4itMIjskZWhDOKKZUwDlagGYCcy35JbrKeQ8ATMhygdbvPrV5sN3QuiJ08aeIobDFa2z6HHv84Xe2O9h-qsa2LoYmxXHXTEDtQ0wHW3W-GMbKX6OLYLvsb_73En2tnz5XG7x9e35ZPW6xY6wcsNTay1JVTiguaWW1rBlRrA6i8kKAlcEBccz6ulS2IopK4qH2nCgNjjJgS3R3untM8Xv0eTD7OKZ-emkopUrykusJIifIpZhz8sEcU3uw6dcQMLMtc7Jl5jjbMoT9AfcTXBY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222764849</pqid></control><display><type>article</type><title>Peristaltic flow of a Johnson-Segalman fluid through a deformable tube</title><source>SpringerLink Journals</source><creator>Wang, Yongqi ; Hayat, Tasawar ; Hutter, Kolumban</creator><creatorcontrib>Wang, Yongqi ; Hayat, Tasawar ; Hutter, Kolumban</creatorcontrib><description>To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0935-4964</identifier><identifier>EISSN: 1432-2250</identifier><identifier>DOI: 10.1007/s00162-007-0054-1</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Fluid dynamics ; Fluids ; Nonlinear equations ; Theory ; Velocity</subject><ispartof>Theoretical and computational fluid dynamics, 2007-09, Vol.21 (5), p.369-380</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-699e687bc57462ba96d3173df5be550a6fc01c3aed87ab17261e0de41790c2303</citedby><cites>FETCH-LOGICAL-c338t-699e687bc57462ba96d3173df5be550a6fc01c3aed87ab17261e0de41790c2303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Wang, Yongqi</creatorcontrib><creatorcontrib>Hayat, Tasawar</creatorcontrib><creatorcontrib>Hutter, Kolumban</creatorcontrib><title>Peristaltic flow of a Johnson-Segalman fluid through a deformable tube</title><title>Theoretical and computational fluid dynamics</title><description>To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest. [PUBLICATION ABSTRACT]</description><subject>Fluid dynamics</subject><subject>Fluids</subject><subject>Nonlinear equations</subject><subject>Theory</subject><subject>Velocity</subject><issn>0935-4964</issn><issn>1432-2250</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkF1LwzAUhoMoOKc_wLviffTku7mU4ZwyUFCvQ5oma0fXzKRF_Pe2zIvDeeF9OAcehG4J3BMA9ZABiKR4itMIjskZWhDOKKZUwDlagGYCcy35JbrKeQ8ATMhygdbvPrV5sN3QuiJ08aeIobDFa2z6HHv84Xe2O9h-qsa2LoYmxXHXTEDtQ0wHW3W-GMbKX6OLYLvsb_73En2tnz5XG7x9e35ZPW6xY6wcsNTay1JVTiguaWW1rBlRrA6i8kKAlcEBccz6ulS2IopK4qH2nCgNjjJgS3R3untM8Xv0eTD7OKZ-emkopUrykusJIifIpZhz8sEcU3uw6dcQMLMtc7Jl5jjbMoT9AfcTXBY</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Wang, Yongqi</creator><creator>Hayat, Tasawar</creator><creator>Hutter, Kolumban</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>U9A</scope></search><sort><creationdate>20070901</creationdate><title>Peristaltic flow of a Johnson-Segalman fluid through a deformable tube</title><author>Wang, Yongqi ; Hayat, Tasawar ; Hutter, Kolumban</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-699e687bc57462ba96d3173df5be550a6fc01c3aed87ab17261e0de41790c2303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Fluid dynamics</topic><topic>Fluids</topic><topic>Nonlinear equations</topic><topic>Theory</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yongqi</creatorcontrib><creatorcontrib>Hayat, Tasawar</creatorcontrib><creatorcontrib>Hutter, Kolumban</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career & Technical Education Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Theoretical and computational fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yongqi</au><au>Hayat, Tasawar</au><au>Hutter, Kolumban</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peristaltic flow of a Johnson-Segalman fluid through a deformable tube</atitle><jtitle>Theoretical and computational fluid dynamics</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>21</volume><issue>5</issue><spage>369</spage><epage>380</epage><pages>369-380</pages><issn>0935-4964</issn><eissn>1432-2250</eissn><abstract>To understand theoretically the flow properties of physiological fluids we have considered as a model the peristaltic motion of a Johnson-Segalman fluid in a tube with a sinusoidal wave traveling down its wall. The perturbation solution for the stream function is obtained for large wavelength and small Weissenberg number. The expressions for the axial velocity, pressure gradient, and pressure rise per wavelength are also constructed. The general solution of the governing nonlinear partial differential equation is given using a transformation method. The numerical solution is also obtained and is compared with the perturbation solution. Numerical results are demonstrated for various values of the physical parameters of interest. [PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00162-007-0054-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-4964 |
ispartof | Theoretical and computational fluid dynamics, 2007-09, Vol.21 (5), p.369-380 |
issn | 0935-4964 1432-2250 |
language | eng |
recordid | cdi_proquest_journals_222764849 |
source | SpringerLink Journals |
subjects | Fluid dynamics Fluids Nonlinear equations Theory Velocity |
title | Peristaltic flow of a Johnson-Segalman fluid through a deformable tube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T12%3A33%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peristaltic%20flow%20of%20a%20Johnson-Segalman%20fluid%20through%20a%20deformable%20tube&rft.jtitle=Theoretical%20and%20computational%20fluid%20dynamics&rft.au=Wang,%20Yongqi&rft.date=2007-09-01&rft.volume=21&rft.issue=5&rft.spage=369&rft.epage=380&rft.pages=369-380&rft.issn=0935-4964&rft.eissn=1432-2250&rft_id=info:doi/10.1007/s00162-007-0054-1&rft_dat=%3Cproquest_cross%3E1315753241%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222764849&rft_id=info:pmid/&rfr_iscdi=true |