Deep Learning for Audio Signal Processing

Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences betwee...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in signal processing 2019-05, Vol.13 (2), p.206-219
Hauptverfasser: Purwins, Hendrik, Li, Bo, Virtanen, Tuomas, Schluter, Jan, Chang, Shuo-Yiin, Sainath, Tara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 219
container_issue 2
container_start_page 206
container_title IEEE journal of selected topics in signal processing
container_volume 13
creator Purwins, Hendrik
Li, Bo
Virtanen, Tuomas
Schluter, Jan
Chang, Shuo-Yiin
Sainath, Tara
description Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.
doi_str_mv 10.1109/JSTSP.2019.2908700
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2227589350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678825</ieee_id><sourcerecordid>2227589350</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-2a2519310270ff6c5be49e16d53f7ebde2b688d881d05dc7a7d6e0685442beb03</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4Cnjykzk7281hq_aJgIfW8JNlJSalN3W0P_nsTUzzNwLzPzPAwdsthwjnYx_d8lS8nCNxO0ILRAGdsxK3gKQgjzvs-w1RImV2yqxg3AFIrLkbs4YlonyyoCLtmt07qNiTTo2_aJG_Wu2KbLENbUYzd7Jpd1MU20s2pjtnn83w1e00XHy9vs-kirdDKQ4oFyu4YB9RQ16qSJQlLXHmZ1ZpKT1gqY7wx3IP0lS60VwTKSCGwpBKyMbsf9u5D-32keHCb9hi6X6JDRC2NzWSfwiFVhTbGQLXbh-arCD-Og-uVuD8lrlfiTko66G6AGiL6B4zSxqDMfgF2qVtI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227589350</pqid></control><display><type>article</type><title>Deep Learning for Audio Signal Processing</title><source>IEEE Electronic Library (IEL)</source><creator>Purwins, Hendrik ; Li, Bo ; Virtanen, Tuomas ; Schluter, Jan ; Chang, Shuo-Yiin ; Sainath, Tara</creator><creatorcontrib>Purwins, Hendrik ; Li, Bo ; Virtanen, Tuomas ; Schluter, Jan ; Chang, Shuo-Yiin ; Sainath, Tara</creatorcontrib><description>Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.</description><identifier>ISSN: 1932-4553</identifier><identifier>EISSN: 1941-0484</identifier><identifier>DOI: 10.1109/JSTSP.2019.2908700</identifier><identifier>CODEN: IJSTGY</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Audio data ; audio enhancement ; Automatic speech recognition ; Background noise ; Computational modeling ; Computer architecture ; Computer memory ; connectionist temporal memory ; Convolution ; Deep learning ; Domains ; environmental sounds ; Hidden Markov models ; Information retrieval ; Localization ; Music ; music information retrieval ; Neural networks ; Short term memory ; Signal processing ; Sound processing ; Source separation ; Speech recognition ; State-of-the-art reviews ; Synthesis ; Task analysis ; Voice recognition</subject><ispartof>IEEE journal of selected topics in signal processing, 2019-05, Vol.13 (2), p.206-219</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-2a2519310270ff6c5be49e16d53f7ebde2b688d881d05dc7a7d6e0685442beb03</citedby><cites>FETCH-LOGICAL-c295t-2a2519310270ff6c5be49e16d53f7ebde2b688d881d05dc7a7d6e0685442beb03</cites><orcidid>0000-0002-4126-6556 ; 0000-0002-0053-215X ; 0000-0002-4604-9729 ; 0000-0002-6711-3603 ; 0000-0003-3862-6888</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678825$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27926,27927,54760</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678825$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Purwins, Hendrik</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Virtanen, Tuomas</creatorcontrib><creatorcontrib>Schluter, Jan</creatorcontrib><creatorcontrib>Chang, Shuo-Yiin</creatorcontrib><creatorcontrib>Sainath, Tara</creatorcontrib><title>Deep Learning for Audio Signal Processing</title><title>IEEE journal of selected topics in signal processing</title><addtitle>JSTSP</addtitle><description>Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.</description><subject>Artificial neural networks</subject><subject>Audio data</subject><subject>audio enhancement</subject><subject>Automatic speech recognition</subject><subject>Background noise</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer memory</subject><subject>connectionist temporal memory</subject><subject>Convolution</subject><subject>Deep learning</subject><subject>Domains</subject><subject>environmental sounds</subject><subject>Hidden Markov models</subject><subject>Information retrieval</subject><subject>Localization</subject><subject>Music</subject><subject>music information retrieval</subject><subject>Neural networks</subject><subject>Short term memory</subject><subject>Signal processing</subject><subject>Sound processing</subject><subject>Source separation</subject><subject>Speech recognition</subject><subject>State-of-the-art reviews</subject><subject>Synthesis</subject><subject>Task analysis</subject><subject>Voice recognition</subject><issn>1932-4553</issn><issn>1941-0484</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4Cnjykzk7281hq_aJgIfW8JNlJSalN3W0P_nsTUzzNwLzPzPAwdsthwjnYx_d8lS8nCNxO0ILRAGdsxK3gKQgjzvs-w1RImV2yqxg3AFIrLkbs4YlonyyoCLtmt07qNiTTo2_aJG_Wu2KbLENbUYzd7Jpd1MU20s2pjtnn83w1e00XHy9vs-kirdDKQ4oFyu4YB9RQ16qSJQlLXHmZ1ZpKT1gqY7wx3IP0lS60VwTKSCGwpBKyMbsf9u5D-32keHCb9hi6X6JDRC2NzWSfwiFVhTbGQLXbh-arCD-Og-uVuD8lrlfiTko66G6AGiL6B4zSxqDMfgF2qVtI</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Purwins, Hendrik</creator><creator>Li, Bo</creator><creator>Virtanen, Tuomas</creator><creator>Schluter, Jan</creator><creator>Chang, Shuo-Yiin</creator><creator>Sainath, Tara</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7T9</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4126-6556</orcidid><orcidid>https://orcid.org/0000-0002-0053-215X</orcidid><orcidid>https://orcid.org/0000-0002-4604-9729</orcidid><orcidid>https://orcid.org/0000-0002-6711-3603</orcidid><orcidid>https://orcid.org/0000-0003-3862-6888</orcidid></search><sort><creationdate>20190501</creationdate><title>Deep Learning for Audio Signal Processing</title><author>Purwins, Hendrik ; Li, Bo ; Virtanen, Tuomas ; Schluter, Jan ; Chang, Shuo-Yiin ; Sainath, Tara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-2a2519310270ff6c5be49e16d53f7ebde2b688d881d05dc7a7d6e0685442beb03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Audio data</topic><topic>audio enhancement</topic><topic>Automatic speech recognition</topic><topic>Background noise</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer memory</topic><topic>connectionist temporal memory</topic><topic>Convolution</topic><topic>Deep learning</topic><topic>Domains</topic><topic>environmental sounds</topic><topic>Hidden Markov models</topic><topic>Information retrieval</topic><topic>Localization</topic><topic>Music</topic><topic>music information retrieval</topic><topic>Neural networks</topic><topic>Short term memory</topic><topic>Signal processing</topic><topic>Sound processing</topic><topic>Source separation</topic><topic>Speech recognition</topic><topic>State-of-the-art reviews</topic><topic>Synthesis</topic><topic>Task analysis</topic><topic>Voice recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Purwins, Hendrik</creatorcontrib><creatorcontrib>Li, Bo</creatorcontrib><creatorcontrib>Virtanen, Tuomas</creatorcontrib><creatorcontrib>Schluter, Jan</creatorcontrib><creatorcontrib>Chang, Shuo-Yiin</creatorcontrib><creatorcontrib>Sainath, Tara</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Linguistics and Language Behavior Abstracts (LLBA)</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Purwins, Hendrik</au><au>Li, Bo</au><au>Virtanen, Tuomas</au><au>Schluter, Jan</au><au>Chang, Shuo-Yiin</au><au>Sainath, Tara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning for Audio Signal Processing</atitle><jtitle>IEEE journal of selected topics in signal processing</jtitle><stitle>JSTSP</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>13</volume><issue>2</issue><spage>206</spage><epage>219</epage><pages>206-219</pages><issn>1932-4553</issn><eissn>1941-0484</eissn><coden>IJSTGY</coden><abstract>Given the recent surge in developments of deep learning, this paper provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e., audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTSP.2019.2908700</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4126-6556</orcidid><orcidid>https://orcid.org/0000-0002-0053-215X</orcidid><orcidid>https://orcid.org/0000-0002-4604-9729</orcidid><orcidid>https://orcid.org/0000-0002-6711-3603</orcidid><orcidid>https://orcid.org/0000-0003-3862-6888</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4553
ispartof IEEE journal of selected topics in signal processing, 2019-05, Vol.13 (2), p.206-219
issn 1932-4553
1941-0484
language eng
recordid cdi_proquest_journals_2227589350
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Audio data
audio enhancement
Automatic speech recognition
Background noise
Computational modeling
Computer architecture
Computer memory
connectionist temporal memory
Convolution
Deep learning
Domains
environmental sounds
Hidden Markov models
Information retrieval
Localization
Music
music information retrieval
Neural networks
Short term memory
Signal processing
Sound processing
Source separation
Speech recognition
State-of-the-art reviews
Synthesis
Task analysis
Voice recognition
title Deep Learning for Audio Signal Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T05%3A48%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20for%20Audio%20Signal%20Processing&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20signal%20processing&rft.au=Purwins,%20Hendrik&rft.date=2019-05-01&rft.volume=13&rft.issue=2&rft.spage=206&rft.epage=219&rft.pages=206-219&rft.issn=1932-4553&rft.eissn=1941-0484&rft.coden=IJSTGY&rft_id=info:doi/10.1109/JSTSP.2019.2908700&rft_dat=%3Cproquest_RIE%3E2227589350%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227589350&rft_id=info:pmid/&rft_ieee_id=8678825&rfr_iscdi=true