Review: propensity score methods with application to the HELP clinic clinical study
Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score metho...
Gespeichert in:
Veröffentlicht in: | Open access medical statistics 2018-01, Vol.8, p.11-23 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 23 |
---|---|
container_issue | |
container_start_page | 11 |
container_title | Open access medical statistics |
container_volume | 8 |
creator | Rai, Shesh N Wu, Xiaoyong Srivastava, Deo K Craycroft, John A Rai, Jayesh P Srivastava, Sanjay James, Robert F Boakye, Maxwell Bhatnagar, Aruni Baumgartner, Richard |
description | Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa |
doi_str_mv | 10.2147/OAMS.S156704 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2227425028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582508405</galeid><sourcerecordid>A582508405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</originalsourceid><addsrcrecordid>eNptkd9LwzAQx4MoOKZv_gEBwSc78-Pabr4N8RdMFKfPIaYXm9E2tUmV_fd2bKCCl4cL4XPf3N2XkBPOJoJDfvE4f1hOljzNcgZ7ZCSEZIkUKd__dT8kxyGs2BAZE9McRmT5jJ8Ovy5p2_kWm-DimgbjO6Q1xtIXgX65WFLdtpUzOjrf0OhpLJHeXS-eqKlc48wu6YqG2BfrI3JgdRXweJfH5PXm-uXqLlk83t5fzReJEQCQmFkmMsYtA8a44QWXCCnInFme80yyFAWzEjKwCCjNTBqwXDMNBUtl-gZyTE63ukPvHz2GqFa-75rhSyWEyEGkw5A_1LuuULnG-thpU7tg1DydDswUBr0xmfxDDafA2hnfoHXD-5-Cs18FJeoqlsFX_WZF4S94vgVN50Po0Kq2c7Xu1ooztXFObZxTO-fkNziwhts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227425028</pqid></control><display><type>article</type><title>Review: propensity score methods with application to the HELP clinic clinical study</title><source>Dove Press Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</creator><creatorcontrib>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</creatorcontrib><description>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</description><identifier>ISSN: 2230-3251</identifier><identifier>EISSN: 2230-3251</identifier><identifier>DOI: 10.2147/OAMS.S156704</identifier><language>eng</language><publisher>Macclesfield: Dove Medical Press Limited</publisher><subject>Addictions ; Adjustment ; Alcohol ; Bias ; Clinical trials ; Drug use ; Epidemiology ; Heart attacks ; Medical research ; Observational studies ; Primary care ; Quality of life ; Risk assessment ; Substance abuse treatment</subject><ispartof>Open access medical statistics, 2018-01, Vol.8, p.11-23</ispartof><rights>COPYRIGHT 2018 Dove Medical Press Limited</rights><rights>2018. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</citedby><orcidid>0000-0001-5084-9457 ; 0000-0002-6954-6381 ; 0000-0002-8377-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3862,27924,27925</link.rule.ids></links><search><creatorcontrib>Rai, Shesh N</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Srivastava, Deo K</creatorcontrib><creatorcontrib>Craycroft, John A</creatorcontrib><creatorcontrib>Rai, Jayesh P</creatorcontrib><creatorcontrib>Srivastava, Sanjay</creatorcontrib><creatorcontrib>James, Robert F</creatorcontrib><creatorcontrib>Boakye, Maxwell</creatorcontrib><creatorcontrib>Bhatnagar, Aruni</creatorcontrib><creatorcontrib>Baumgartner, Richard</creatorcontrib><title>Review: propensity score methods with application to the HELP clinic clinical study</title><title>Open access medical statistics</title><description>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</description><subject>Addictions</subject><subject>Adjustment</subject><subject>Alcohol</subject><subject>Bias</subject><subject>Clinical trials</subject><subject>Drug use</subject><subject>Epidemiology</subject><subject>Heart attacks</subject><subject>Medical research</subject><subject>Observational studies</subject><subject>Primary care</subject><subject>Quality of life</subject><subject>Risk assessment</subject><subject>Substance abuse treatment</subject><issn>2230-3251</issn><issn>2230-3251</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkd9LwzAQx4MoOKZv_gEBwSc78-Pabr4N8RdMFKfPIaYXm9E2tUmV_fd2bKCCl4cL4XPf3N2XkBPOJoJDfvE4f1hOljzNcgZ7ZCSEZIkUKd__dT8kxyGs2BAZE9McRmT5jJ8Ovy5p2_kWm-DimgbjO6Q1xtIXgX65WFLdtpUzOjrf0OhpLJHeXS-eqKlc48wu6YqG2BfrI3JgdRXweJfH5PXm-uXqLlk83t5fzReJEQCQmFkmMsYtA8a44QWXCCnInFme80yyFAWzEjKwCCjNTBqwXDMNBUtl-gZyTE63ukPvHz2GqFa-75rhSyWEyEGkw5A_1LuuULnG-thpU7tg1DydDswUBr0xmfxDDafA2hnfoHXD-5-Cs18FJeoqlsFX_WZF4S94vgVN50Po0Kq2c7Xu1ooztXFObZxTO-fkNziwhts</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Rai, Shesh N</creator><creator>Wu, Xiaoyong</creator><creator>Srivastava, Deo K</creator><creator>Craycroft, John A</creator><creator>Rai, Jayesh P</creator><creator>Srivastava, Sanjay</creator><creator>James, Robert F</creator><creator>Boakye, Maxwell</creator><creator>Bhatnagar, Aruni</creator><creator>Baumgartner, Richard</creator><general>Dove Medical Press Limited</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8C1</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5084-9457</orcidid><orcidid>https://orcid.org/0000-0002-6954-6381</orcidid><orcidid>https://orcid.org/0000-0002-8377-353X</orcidid></search><sort><creationdate>20180101</creationdate><title>Review: propensity score methods with application to the HELP clinic clinical study</title><author>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Adjustment</topic><topic>Alcohol</topic><topic>Bias</topic><topic>Clinical trials</topic><topic>Drug use</topic><topic>Epidemiology</topic><topic>Heart attacks</topic><topic>Medical research</topic><topic>Observational studies</topic><topic>Primary care</topic><topic>Quality of life</topic><topic>Risk assessment</topic><topic>Substance abuse treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Shesh N</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Srivastava, Deo K</creatorcontrib><creatorcontrib>Craycroft, John A</creatorcontrib><creatorcontrib>Rai, Jayesh P</creatorcontrib><creatorcontrib>Srivastava, Sanjay</creatorcontrib><creatorcontrib>James, Robert F</creatorcontrib><creatorcontrib>Boakye, Maxwell</creatorcontrib><creatorcontrib>Bhatnagar, Aruni</creatorcontrib><creatorcontrib>Baumgartner, Richard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Open access medical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Shesh N</au><au>Wu, Xiaoyong</au><au>Srivastava, Deo K</au><au>Craycroft, John A</au><au>Rai, Jayesh P</au><au>Srivastava, Sanjay</au><au>James, Robert F</au><au>Boakye, Maxwell</au><au>Bhatnagar, Aruni</au><au>Baumgartner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: propensity score methods with application to the HELP clinic clinical study</atitle><jtitle>Open access medical statistics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><spage>11</spage><epage>23</epage><pages>11-23</pages><issn>2230-3251</issn><eissn>2230-3251</eissn><abstract>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</abstract><cop>Macclesfield</cop><pub>Dove Medical Press Limited</pub><doi>10.2147/OAMS.S156704</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5084-9457</orcidid><orcidid>https://orcid.org/0000-0002-6954-6381</orcidid><orcidid>https://orcid.org/0000-0002-8377-353X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2230-3251 |
ispartof | Open access medical statistics, 2018-01, Vol.8, p.11-23 |
issn | 2230-3251 2230-3251 |
language | eng |
recordid | cdi_proquest_journals_2227425028 |
source | Dove Press Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Addictions Adjustment Alcohol Bias Clinical trials Drug use Epidemiology Heart attacks Medical research Observational studies Primary care Quality of life Risk assessment Substance abuse treatment |
title | Review: propensity score methods with application to the HELP clinic clinical study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20propensity%20score%20methods%20with%20application%20to%20the%20HELP%20clinic%20clinical%20study&rft.jtitle=Open%20access%20medical%20statistics&rft.au=Rai,%20Shesh%20N&rft.date=2018-01-01&rft.volume=8&rft.spage=11&rft.epage=23&rft.pages=11-23&rft.issn=2230-3251&rft.eissn=2230-3251&rft_id=info:doi/10.2147/OAMS.S156704&rft_dat=%3Cgale_proqu%3EA582508405%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227425028&rft_id=info:pmid/&rft_galeid=A582508405&rfr_iscdi=true |