Review: propensity score methods with application to the HELP clinic clinical study

Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Open access medical statistics 2018-01, Vol.8, p.11-23
Hauptverfasser: Rai, Shesh N, Wu, Xiaoyong, Srivastava, Deo K, Craycroft, John A, Rai, Jayesh P, Srivastava, Sanjay, James, Robert F, Boakye, Maxwell, Bhatnagar, Aruni, Baumgartner, Richard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 11
container_title Open access medical statistics
container_volume 8
creator Rai, Shesh N
Wu, Xiaoyong
Srivastava, Deo K
Craycroft, John A
Rai, Jayesh P
Srivastava, Sanjay
James, Robert F
Boakye, Maxwell
Bhatnagar, Aruni
Baumgartner, Richard
description Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa
doi_str_mv 10.2147/OAMS.S156704
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2227425028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A582508405</galeid><sourcerecordid>A582508405</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</originalsourceid><addsrcrecordid>eNptkd9LwzAQx4MoOKZv_gEBwSc78-Pabr4N8RdMFKfPIaYXm9E2tUmV_fd2bKCCl4cL4XPf3N2XkBPOJoJDfvE4f1hOljzNcgZ7ZCSEZIkUKd__dT8kxyGs2BAZE9McRmT5jJ8Ovy5p2_kWm-DimgbjO6Q1xtIXgX65WFLdtpUzOjrf0OhpLJHeXS-eqKlc48wu6YqG2BfrI3JgdRXweJfH5PXm-uXqLlk83t5fzReJEQCQmFkmMsYtA8a44QWXCCnInFme80yyFAWzEjKwCCjNTBqwXDMNBUtl-gZyTE63ukPvHz2GqFa-75rhSyWEyEGkw5A_1LuuULnG-thpU7tg1DydDswUBr0xmfxDDafA2hnfoHXD-5-Cs18FJeoqlsFX_WZF4S94vgVN50Po0Kq2c7Xu1ooztXFObZxTO-fkNziwhts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227425028</pqid></control><display><type>article</type><title>Review: propensity score methods with application to the HELP clinic clinical study</title><source>Dove Press Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</creator><creatorcontrib>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</creatorcontrib><description>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</description><identifier>ISSN: 2230-3251</identifier><identifier>EISSN: 2230-3251</identifier><identifier>DOI: 10.2147/OAMS.S156704</identifier><language>eng</language><publisher>Macclesfield: Dove Medical Press Limited</publisher><subject>Addictions ; Adjustment ; Alcohol ; Bias ; Clinical trials ; Drug use ; Epidemiology ; Heart attacks ; Medical research ; Observational studies ; Primary care ; Quality of life ; Risk assessment ; Substance abuse treatment</subject><ispartof>Open access medical statistics, 2018-01, Vol.8, p.11-23</ispartof><rights>COPYRIGHT 2018 Dove Medical Press Limited</rights><rights>2018. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</citedby><orcidid>0000-0001-5084-9457 ; 0000-0002-6954-6381 ; 0000-0002-8377-353X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3862,27924,27925</link.rule.ids></links><search><creatorcontrib>Rai, Shesh N</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Srivastava, Deo K</creatorcontrib><creatorcontrib>Craycroft, John A</creatorcontrib><creatorcontrib>Rai, Jayesh P</creatorcontrib><creatorcontrib>Srivastava, Sanjay</creatorcontrib><creatorcontrib>James, Robert F</creatorcontrib><creatorcontrib>Boakye, Maxwell</creatorcontrib><creatorcontrib>Bhatnagar, Aruni</creatorcontrib><creatorcontrib>Baumgartner, Richard</creatorcontrib><title>Review: propensity score methods with application to the HELP clinic clinical study</title><title>Open access medical statistics</title><description>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</description><subject>Addictions</subject><subject>Adjustment</subject><subject>Alcohol</subject><subject>Bias</subject><subject>Clinical trials</subject><subject>Drug use</subject><subject>Epidemiology</subject><subject>Heart attacks</subject><subject>Medical research</subject><subject>Observational studies</subject><subject>Primary care</subject><subject>Quality of life</subject><subject>Risk assessment</subject><subject>Substance abuse treatment</subject><issn>2230-3251</issn><issn>2230-3251</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkd9LwzAQx4MoOKZv_gEBwSc78-Pabr4N8RdMFKfPIaYXm9E2tUmV_fd2bKCCl4cL4XPf3N2XkBPOJoJDfvE4f1hOljzNcgZ7ZCSEZIkUKd__dT8kxyGs2BAZE9McRmT5jJ8Ovy5p2_kWm-DimgbjO6Q1xtIXgX65WFLdtpUzOjrf0OhpLJHeXS-eqKlc48wu6YqG2BfrI3JgdRXweJfH5PXm-uXqLlk83t5fzReJEQCQmFkmMsYtA8a44QWXCCnInFme80yyFAWzEjKwCCjNTBqwXDMNBUtl-gZyTE63ukPvHz2GqFa-75rhSyWEyEGkw5A_1LuuULnG-thpU7tg1DydDswUBr0xmfxDDafA2hnfoHXD-5-Cs18FJeoqlsFX_WZF4S94vgVN50Po0Kq2c7Xu1ooztXFObZxTO-fkNziwhts</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Rai, Shesh N</creator><creator>Wu, Xiaoyong</creator><creator>Srivastava, Deo K</creator><creator>Craycroft, John A</creator><creator>Rai, Jayesh P</creator><creator>Srivastava, Sanjay</creator><creator>James, Robert F</creator><creator>Boakye, Maxwell</creator><creator>Bhatnagar, Aruni</creator><creator>Baumgartner, Richard</creator><general>Dove Medical Press Limited</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8C1</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5084-9457</orcidid><orcidid>https://orcid.org/0000-0002-6954-6381</orcidid><orcidid>https://orcid.org/0000-0002-8377-353X</orcidid></search><sort><creationdate>20180101</creationdate><title>Review: propensity score methods with application to the HELP clinic clinical study</title><author>Rai, Shesh N ; Wu, Xiaoyong ; Srivastava, Deo K ; Craycroft, John A ; Rai, Jayesh P ; Srivastava, Sanjay ; James, Robert F ; Boakye, Maxwell ; Bhatnagar, Aruni ; Baumgartner, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2444-c962601f04001c1d13e454370f1716305e20f3464fe4e3c93c4f1a0a4d0535b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Addictions</topic><topic>Adjustment</topic><topic>Alcohol</topic><topic>Bias</topic><topic>Clinical trials</topic><topic>Drug use</topic><topic>Epidemiology</topic><topic>Heart attacks</topic><topic>Medical research</topic><topic>Observational studies</topic><topic>Primary care</topic><topic>Quality of life</topic><topic>Risk assessment</topic><topic>Substance abuse treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rai, Shesh N</creatorcontrib><creatorcontrib>Wu, Xiaoyong</creatorcontrib><creatorcontrib>Srivastava, Deo K</creatorcontrib><creatorcontrib>Craycroft, John A</creatorcontrib><creatorcontrib>Rai, Jayesh P</creatorcontrib><creatorcontrib>Srivastava, Sanjay</creatorcontrib><creatorcontrib>James, Robert F</creatorcontrib><creatorcontrib>Boakye, Maxwell</creatorcontrib><creatorcontrib>Bhatnagar, Aruni</creatorcontrib><creatorcontrib>Baumgartner, Richard</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Public Health Database</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Open access medical statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rai, Shesh N</au><au>Wu, Xiaoyong</au><au>Srivastava, Deo K</au><au>Craycroft, John A</au><au>Rai, Jayesh P</au><au>Srivastava, Sanjay</au><au>James, Robert F</au><au>Boakye, Maxwell</au><au>Bhatnagar, Aruni</au><au>Baumgartner, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Review: propensity score methods with application to the HELP clinic clinical study</atitle><jtitle>Open access medical statistics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>8</volume><spage>11</spage><epage>23</epage><pages>11-23</pages><issn>2230-3251</issn><eissn>2230-3251</eissn><abstract>Observational studies, common in clinical trials, often suffer from a lack of random assignment of the treatment. This can lead to large differences in covariates between the treated and untreated groups, which should be accounted for prior to inference, hypothesis tests, etc. Propensity score methods are frequently used to control for potentially confounding covariates when assessing causal effects of treatment on outcome. In this review, we introduce four adjustment methods based on propensity scores including matching, stratification, inverse probability of treatment weighting and covariate adjustment. Also, we give a general description of these four methods and provide some visual tools to assess covariate balance between the treated and untreated groups. We confirm the feasibility of propensity score methods by analyzing the Health Evaluation and Linkage to Primary care clinic clinical data. Keywords: propensity score, covariate balance, observational studies, association analysis, HELP Clinic, proc glm, proc logistic, cat.psa, box.psa</abstract><cop>Macclesfield</cop><pub>Dove Medical Press Limited</pub><doi>10.2147/OAMS.S156704</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5084-9457</orcidid><orcidid>https://orcid.org/0000-0002-6954-6381</orcidid><orcidid>https://orcid.org/0000-0002-8377-353X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2230-3251
ispartof Open access medical statistics, 2018-01, Vol.8, p.11-23
issn 2230-3251
2230-3251
language eng
recordid cdi_proquest_journals_2227425028
source Dove Press Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Addictions
Adjustment
Alcohol
Bias
Clinical trials
Drug use
Epidemiology
Heart attacks
Medical research
Observational studies
Primary care
Quality of life
Risk assessment
Substance abuse treatment
title Review: propensity score methods with application to the HELP clinic clinical study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A58%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Review:%20propensity%20score%20methods%20with%20application%20to%20the%20HELP%20clinic%20clinical%20study&rft.jtitle=Open%20access%20medical%20statistics&rft.au=Rai,%20Shesh%20N&rft.date=2018-01-01&rft.volume=8&rft.spage=11&rft.epage=23&rft.pages=11-23&rft.issn=2230-3251&rft.eissn=2230-3251&rft_id=info:doi/10.2147/OAMS.S156704&rft_dat=%3Cgale_proqu%3EA582508405%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227425028&rft_id=info:pmid/&rft_galeid=A582508405&rfr_iscdi=true