Mechanochemical transduction and hygroelectricity in periodically stretched rubber

This work reports the rubber electrostatic potential due to repeated strain as a function of time for periods as long as the lifetime of the sample. Rubber potential depends on two main contributions: hygroelectricity added to the mechanochemical reactions evidenced by spectroscopy and microscopy/mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer (Guilford) 2019-05, Vol.171, p.173-179
Hauptverfasser: Santos, Leandra P., da Silva, Douglas S., Batista, Bruno C., Moreira, Kelly S., Burgo, Thiago A.L., Galembeck, Fernando
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 179
container_issue
container_start_page 173
container_title Polymer (Guilford)
container_volume 171
creator Santos, Leandra P.
da Silva, Douglas S.
Batista, Bruno C.
Moreira, Kelly S.
Burgo, Thiago A.L.
Galembeck, Fernando
description This work reports the rubber electrostatic potential due to repeated strain as a function of time for periods as long as the lifetime of the sample. Rubber potential depends on two main contributions: hygroelectricity added to the mechanochemical reactions evidenced by spectroscopy and microscopy/microanalytical experiments. Hygroelectricity produces fast periodic charging in phase with rubber strain, while a slower charging process is assigned to the mechanochemical reaction products, in conjunction with residual hygroelectricity. This result explains the significant negative potential displayed by rubber over long periods in the absence of any external applied voltage. These findings may contribute to improving dielectric elastomer performance in many applications that are currently of great interest in robotics and energy harvesting. Additionally, electric potential real-time measurements show desirable features as a tool for real-time, non-contact detection of rubber structural change and fatigue. [Display omitted] •Periodically stretched rubber harvests electric charge from the atmosphere.•Hygroelectricity events and mechanochemical reactions add charge to rubber.•Rubber-based energy scavengers can be built around elastomers used in everyday life.•Rubber makes nonstop mechanical energy transduction, throughout its lifetime.•Potential measurements may provide real time monitoring of rubber fatigue and wear.
doi_str_mv 10.1016/j.polymer.2019.03.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227416497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032386119302496</els_id><sourcerecordid>2227416497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-68e4a4c4a463d1618c7dfa83aac646baefea2d50bba1931eba206add7f4973d13</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BCHguTUf3bQ9iYhfsCKInkOaTN2UblOTVOi_N2X37mGYw7zPDPMgdE1JTgkVt10-un7eg88ZoXVOeE5YdYJWtCp5xlhNT9GKEM4yXgl6ji5C6AghbMOKFfp4A71Tg9M72Futehy9GoKZdLRuwGoweDd_ewc96OittnHGdsAjeOvMku9nHKKHmHiD_dQ04C_RWav6AFfHvkZfT4-fDy_Z9v359eF-m2leFjETFRSq0KkEN1TQSpemVRVXSotCNApaUMxsSNMoWnMKjWJEKGPKtqjLRPA1ujnsHb37mSBE2bnJD-mkZIyVBRVLcI02h5T2LgQPrRy93Ss_S0rkok928qhPLvok4TLpS9zdgYP0wq9N06AtDBqM9cmFNM7-s-EPcjZ-ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227416497</pqid></control><display><type>article</type><title>Mechanochemical transduction and hygroelectricity in periodically stretched rubber</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Santos, Leandra P. ; da Silva, Douglas S. ; Batista, Bruno C. ; Moreira, Kelly S. ; Burgo, Thiago A.L. ; Galembeck, Fernando</creator><creatorcontrib>Santos, Leandra P. ; da Silva, Douglas S. ; Batista, Bruno C. ; Moreira, Kelly S. ; Burgo, Thiago A.L. ; Galembeck, Fernando</creatorcontrib><description>This work reports the rubber electrostatic potential due to repeated strain as a function of time for periods as long as the lifetime of the sample. Rubber potential depends on two main contributions: hygroelectricity added to the mechanochemical reactions evidenced by spectroscopy and microscopy/microanalytical experiments. Hygroelectricity produces fast periodic charging in phase with rubber strain, while a slower charging process is assigned to the mechanochemical reaction products, in conjunction with residual hygroelectricity. This result explains the significant negative potential displayed by rubber over long periods in the absence of any external applied voltage. These findings may contribute to improving dielectric elastomer performance in many applications that are currently of great interest in robotics and energy harvesting. Additionally, electric potential real-time measurements show desirable features as a tool for real-time, non-contact detection of rubber structural change and fatigue. [Display omitted] •Periodically stretched rubber harvests electric charge from the atmosphere.•Hygroelectricity events and mechanochemical reactions add charge to rubber.•Rubber-based energy scavengers can be built around elastomers used in everyday life.•Rubber makes nonstop mechanical energy transduction, throughout its lifetime.•Potential measurements may provide real time monitoring of rubber fatigue and wear.</description><identifier>ISSN: 0032-3861</identifier><identifier>EISSN: 1873-2291</identifier><identifier>DOI: 10.1016/j.polymer.2019.03.028</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Charging ; Dielectric elastomer ; Elastomers ; Electric contacts ; Electric potential ; Electrostatic properties ; Energy harvesting ; Mechanochemistry ; Microscopy ; Reaction products ; Real time ; Robotics ; Rubber ; Spectroscopy</subject><ispartof>Polymer (Guilford), 2019-05, Vol.171, p.173-179</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 8, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-68e4a4c4a463d1618c7dfa83aac646baefea2d50bba1931eba206add7f4973d13</citedby><cites>FETCH-LOGICAL-c374t-68e4a4c4a463d1618c7dfa83aac646baefea2d50bba1931eba206add7f4973d13</cites><orcidid>0000-0003-4778-5442 ; 0000-0003-2521-3574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.polymer.2019.03.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Santos, Leandra P.</creatorcontrib><creatorcontrib>da Silva, Douglas S.</creatorcontrib><creatorcontrib>Batista, Bruno C.</creatorcontrib><creatorcontrib>Moreira, Kelly S.</creatorcontrib><creatorcontrib>Burgo, Thiago A.L.</creatorcontrib><creatorcontrib>Galembeck, Fernando</creatorcontrib><title>Mechanochemical transduction and hygroelectricity in periodically stretched rubber</title><title>Polymer (Guilford)</title><description>This work reports the rubber electrostatic potential due to repeated strain as a function of time for periods as long as the lifetime of the sample. Rubber potential depends on two main contributions: hygroelectricity added to the mechanochemical reactions evidenced by spectroscopy and microscopy/microanalytical experiments. Hygroelectricity produces fast periodic charging in phase with rubber strain, while a slower charging process is assigned to the mechanochemical reaction products, in conjunction with residual hygroelectricity. This result explains the significant negative potential displayed by rubber over long periods in the absence of any external applied voltage. These findings may contribute to improving dielectric elastomer performance in many applications that are currently of great interest in robotics and energy harvesting. Additionally, electric potential real-time measurements show desirable features as a tool for real-time, non-contact detection of rubber structural change and fatigue. [Display omitted] •Periodically stretched rubber harvests electric charge from the atmosphere.•Hygroelectricity events and mechanochemical reactions add charge to rubber.•Rubber-based energy scavengers can be built around elastomers used in everyday life.•Rubber makes nonstop mechanical energy transduction, throughout its lifetime.•Potential measurements may provide real time monitoring of rubber fatigue and wear.</description><subject>Charging</subject><subject>Dielectric elastomer</subject><subject>Elastomers</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrostatic properties</subject><subject>Energy harvesting</subject><subject>Mechanochemistry</subject><subject>Microscopy</subject><subject>Reaction products</subject><subject>Real time</subject><subject>Robotics</subject><subject>Rubber</subject><subject>Spectroscopy</subject><issn>0032-3861</issn><issn>1873-2291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BCHguTUf3bQ9iYhfsCKInkOaTN2UblOTVOi_N2X37mGYw7zPDPMgdE1JTgkVt10-un7eg88ZoXVOeE5YdYJWtCp5xlhNT9GKEM4yXgl6ji5C6AghbMOKFfp4A71Tg9M72Futehy9GoKZdLRuwGoweDd_ewc96OittnHGdsAjeOvMku9nHKKHmHiD_dQ04C_RWav6AFfHvkZfT4-fDy_Z9v359eF-m2leFjETFRSq0KkEN1TQSpemVRVXSotCNApaUMxsSNMoWnMKjWJEKGPKtqjLRPA1ujnsHb37mSBE2bnJD-mkZIyVBRVLcI02h5T2LgQPrRy93Ss_S0rkok928qhPLvok4TLpS9zdgYP0wq9N06AtDBqM9cmFNM7-s-EPcjZ-ZQ</recordid><startdate>20190508</startdate><enddate>20190508</enddate><creator>Santos, Leandra P.</creator><creator>da Silva, Douglas S.</creator><creator>Batista, Bruno C.</creator><creator>Moreira, Kelly S.</creator><creator>Burgo, Thiago A.L.</creator><creator>Galembeck, Fernando</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-4778-5442</orcidid><orcidid>https://orcid.org/0000-0003-2521-3574</orcidid></search><sort><creationdate>20190508</creationdate><title>Mechanochemical transduction and hygroelectricity in periodically stretched rubber</title><author>Santos, Leandra P. ; da Silva, Douglas S. ; Batista, Bruno C. ; Moreira, Kelly S. ; Burgo, Thiago A.L. ; Galembeck, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-68e4a4c4a463d1618c7dfa83aac646baefea2d50bba1931eba206add7f4973d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Charging</topic><topic>Dielectric elastomer</topic><topic>Elastomers</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrostatic properties</topic><topic>Energy harvesting</topic><topic>Mechanochemistry</topic><topic>Microscopy</topic><topic>Reaction products</topic><topic>Real time</topic><topic>Robotics</topic><topic>Rubber</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Leandra P.</creatorcontrib><creatorcontrib>da Silva, Douglas S.</creatorcontrib><creatorcontrib>Batista, Bruno C.</creatorcontrib><creatorcontrib>Moreira, Kelly S.</creatorcontrib><creatorcontrib>Burgo, Thiago A.L.</creatorcontrib><creatorcontrib>Galembeck, Fernando</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Polymer (Guilford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Leandra P.</au><au>da Silva, Douglas S.</au><au>Batista, Bruno C.</au><au>Moreira, Kelly S.</au><au>Burgo, Thiago A.L.</au><au>Galembeck, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanochemical transduction and hygroelectricity in periodically stretched rubber</atitle><jtitle>Polymer (Guilford)</jtitle><date>2019-05-08</date><risdate>2019</risdate><volume>171</volume><spage>173</spage><epage>179</epage><pages>173-179</pages><issn>0032-3861</issn><eissn>1873-2291</eissn><abstract>This work reports the rubber electrostatic potential due to repeated strain as a function of time for periods as long as the lifetime of the sample. Rubber potential depends on two main contributions: hygroelectricity added to the mechanochemical reactions evidenced by spectroscopy and microscopy/microanalytical experiments. Hygroelectricity produces fast periodic charging in phase with rubber strain, while a slower charging process is assigned to the mechanochemical reaction products, in conjunction with residual hygroelectricity. This result explains the significant negative potential displayed by rubber over long periods in the absence of any external applied voltage. These findings may contribute to improving dielectric elastomer performance in many applications that are currently of great interest in robotics and energy harvesting. Additionally, electric potential real-time measurements show desirable features as a tool for real-time, non-contact detection of rubber structural change and fatigue. [Display omitted] •Periodically stretched rubber harvests electric charge from the atmosphere.•Hygroelectricity events and mechanochemical reactions add charge to rubber.•Rubber-based energy scavengers can be built around elastomers used in everyday life.•Rubber makes nonstop mechanical energy transduction, throughout its lifetime.•Potential measurements may provide real time monitoring of rubber fatigue and wear.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.polymer.2019.03.028</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-4778-5442</orcidid><orcidid>https://orcid.org/0000-0003-2521-3574</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0032-3861
ispartof Polymer (Guilford), 2019-05, Vol.171, p.173-179
issn 0032-3861
1873-2291
language eng
recordid cdi_proquest_journals_2227416497
source ScienceDirect Journals (5 years ago - present)
subjects Charging
Dielectric elastomer
Elastomers
Electric contacts
Electric potential
Electrostatic properties
Energy harvesting
Mechanochemistry
Microscopy
Reaction products
Real time
Robotics
Rubber
Spectroscopy
title Mechanochemical transduction and hygroelectricity in periodically stretched rubber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A25%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanochemical%20transduction%20and%20hygroelectricity%20in%20periodically%20stretched%20rubber&rft.jtitle=Polymer%20(Guilford)&rft.au=Santos,%20Leandra%20P.&rft.date=2019-05-08&rft.volume=171&rft.spage=173&rft.epage=179&rft.pages=173-179&rft.issn=0032-3861&rft.eissn=1873-2291&rft_id=info:doi/10.1016/j.polymer.2019.03.028&rft_dat=%3Cproquest_cross%3E2227416497%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227416497&rft_id=info:pmid/&rft_els_id=S0032386119302496&rfr_iscdi=true