Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging

The study focuses on corrosion fatigue processes taking place in an ultrafine-grained (UFG) near-α-titanium alloy Ti-2.5Al-2.6Zr (Russian industrial name PT7M) used in nuclear engineering. UFG structure formed with Rotary Swaging is found to increase resistance to corrosion fatigue. Parameters of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2019-06, Vol.790, p.347-362
Hauptverfasser: Chuvil'deev, V.N., Kopylov, V.I., Berendeev, N.N., Murashov, A.A., Nokhrin, A.V., Gryaznov, M. Yu, Shadrina, I.S., Tabachkova, N. Yu, Likhnitskii, C.V., Kotkov, D.N., Tryaev, P.V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 362
container_issue
container_start_page 347
container_title Journal of alloys and compounds
container_volume 790
creator Chuvil'deev, V.N.
Kopylov, V.I.
Berendeev, N.N.
Murashov, A.A.
Nokhrin, A.V.
Gryaznov, M. Yu
Shadrina, I.S.
Tabachkova, N. Yu
Likhnitskii, C.V.
Kotkov, D.N.
Tryaev, P.V.
description The study focuses on corrosion fatigue processes taking place in an ultrafine-grained (UFG) near-α-titanium alloy Ti-2.5Al-2.6Zr (Russian industrial name PT7M) used in nuclear engineering. UFG structure formed with Rotary Swaging is found to increase resistance to corrosion fatigue. Parameters of the Basquin's equation are defined and the slope of the fatigue curve σa-lg(N) is shown to depend (nonmonotonic dependence) on the UFG alloy annealing temperature. This effect can be explained with the patterns of microstructural evolution in a UFG alloy PT7M during annealing: (1) reduced density of lattice dislocations, (2) precipitation and dissolution of zirconium nanoparticles, (3) release of α′′-phase particles causing internal stress fields along interphase (α-α′′)-boundaries, and (4) intensive grain growth at elevated annealing temperatures. It is shown that the fatigue crack closure effect manifested as changing internal stress fields determined using XRD method may be observed in UFG titanium alloys. •UFG structure in near-α-alloy Ti-2.5Al-2.6Zr was formed with Rotary Swaging.•UFG alloys are highly resistant to corrosion fatigue.•UFG alloys offer a wide scatter of fatigue data due to structural inhomogeneity.•Fatigue curve σа-lg(N) is described with the Basquin's equation σа = A⋅N−q.•Parameter A for a UFG alloy is in nonmonotonic dependence on the annealing temperature.
doi_str_mv 10.1016/j.jallcom.2019.03.146
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227414361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819309594</els_id><sourcerecordid>2227414361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-6d60d844a76fb22534e57df0d22774f96a575ff66486222de9ffcef51b011d923</originalsourceid><addsrcrecordid>eNqFkNlKAzEUQIMoWKufIAR8njHbJDNPIsUNFMXlOaRZSsY2qZmM0s_yR_wmU-q7TxfuPXc7AJxiVGOE-Xlf92q51HFVE4S7GtEaM74HJrgVtGKcd_tggjrSVC1t20NwNAw9QoWkeALCLKYUBx8DdCr7xWihTkq_Qx989iVTCj7AcZmTcj7YapFUCQYGq1L18w2zzyr4cQXLCXEDn17FA1wnu1apQPMNfI5ZpQ18-VILHxbH4MCp5WBP_uIUvF1fvc5uq_vHm7vZ5X2lKRW54oYj0zKmBHdzQhrKbCOMQ4YQIZjruGpE4xznrOWEEGM757R1DZ4jjE1H6BSc7eauU_wY7ZBlH8cUykpZeMEwoxwXqtlRuigYknVynfyqnCsxklu1spd_auVWrURUFrWl72LXZ8sLn94mOWhvg7bGJ6uzNNH_M-EX42KGcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227414361</pqid></control><display><type>article</type><title>Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging</title><source>Elsevier ScienceDirect Journals</source><creator>Chuvil'deev, V.N. ; Kopylov, V.I. ; Berendeev, N.N. ; Murashov, A.A. ; Nokhrin, A.V. ; Gryaznov, M. Yu ; Shadrina, I.S. ; Tabachkova, N. Yu ; Likhnitskii, C.V. ; Kotkov, D.N. ; Tryaev, P.V.</creator><creatorcontrib>Chuvil'deev, V.N. ; Kopylov, V.I. ; Berendeev, N.N. ; Murashov, A.A. ; Nokhrin, A.V. ; Gryaznov, M. Yu ; Shadrina, I.S. ; Tabachkova, N. Yu ; Likhnitskii, C.V. ; Kotkov, D.N. ; Tryaev, P.V.</creatorcontrib><description>The study focuses on corrosion fatigue processes taking place in an ultrafine-grained (UFG) near-α-titanium alloy Ti-2.5Al-2.6Zr (Russian industrial name PT7M) used in nuclear engineering. UFG structure formed with Rotary Swaging is found to increase resistance to corrosion fatigue. Parameters of the Basquin's equation are defined and the slope of the fatigue curve σa-lg(N) is shown to depend (nonmonotonic dependence) on the UFG alloy annealing temperature. This effect can be explained with the patterns of microstructural evolution in a UFG alloy PT7M during annealing: (1) reduced density of lattice dislocations, (2) precipitation and dissolution of zirconium nanoparticles, (3) release of α′′-phase particles causing internal stress fields along interphase (α-α′′)-boundaries, and (4) intensive grain growth at elevated annealing temperatures. It is shown that the fatigue crack closure effect manifested as changing internal stress fields determined using XRD method may be observed in UFG titanium alloys. •UFG structure in near-α-alloy Ti-2.5Al-2.6Zr was formed with Rotary Swaging.•UFG alloys are highly resistant to corrosion fatigue.•UFG alloys offer a wide scatter of fatigue data due to structural inhomogeneity.•Fatigue curve σа-lg(N) is described with the Basquin's equation σа = A⋅N−q.•Parameter A for a UFG alloy is in nonmonotonic dependence on the annealing temperature.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.03.146</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Corrosion ; Corrosion fatigue ; Corrosion resistance ; Corrosion tests ; Crack closure ; Crack initiation ; Crack propagation ; Dependence ; Dislocation density ; Fatigue ; Fatigue failure ; Fine-grained structure ; Fracture mechanics ; Grain boundary ; Grain growth ; Metal fatigue ; Nanoparticles ; Nuclear engineering ; Residual stress ; Rotary swaging ; Strength ; Stress distribution ; Swaging ; Titanium alloys ; Titanium base alloys ; Ultrafines ; Zirconium</subject><ispartof>Journal of alloys and compounds, 2019-06, Vol.790, p.347-362</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 25, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-6d60d844a76fb22534e57df0d22774f96a575ff66486222de9ffcef51b011d923</citedby><cites>FETCH-LOGICAL-c337t-6d60d844a76fb22534e57df0d22774f96a575ff66486222de9ffcef51b011d923</cites><orcidid>0000-0002-0328-1923 ; 0000-0002-5411-6557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838819309594$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Chuvil'deev, V.N.</creatorcontrib><creatorcontrib>Kopylov, V.I.</creatorcontrib><creatorcontrib>Berendeev, N.N.</creatorcontrib><creatorcontrib>Murashov, A.A.</creatorcontrib><creatorcontrib>Nokhrin, A.V.</creatorcontrib><creatorcontrib>Gryaznov, M. Yu</creatorcontrib><creatorcontrib>Shadrina, I.S.</creatorcontrib><creatorcontrib>Tabachkova, N. Yu</creatorcontrib><creatorcontrib>Likhnitskii, C.V.</creatorcontrib><creatorcontrib>Kotkov, D.N.</creatorcontrib><creatorcontrib>Tryaev, P.V.</creatorcontrib><title>Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging</title><title>Journal of alloys and compounds</title><description>The study focuses on corrosion fatigue processes taking place in an ultrafine-grained (UFG) near-α-titanium alloy Ti-2.5Al-2.6Zr (Russian industrial name PT7M) used in nuclear engineering. UFG structure formed with Rotary Swaging is found to increase resistance to corrosion fatigue. Parameters of the Basquin's equation are defined and the slope of the fatigue curve σa-lg(N) is shown to depend (nonmonotonic dependence) on the UFG alloy annealing temperature. This effect can be explained with the patterns of microstructural evolution in a UFG alloy PT7M during annealing: (1) reduced density of lattice dislocations, (2) precipitation and dissolution of zirconium nanoparticles, (3) release of α′′-phase particles causing internal stress fields along interphase (α-α′′)-boundaries, and (4) intensive grain growth at elevated annealing temperatures. It is shown that the fatigue crack closure effect manifested as changing internal stress fields determined using XRD method may be observed in UFG titanium alloys. •UFG structure in near-α-alloy Ti-2.5Al-2.6Zr was formed with Rotary Swaging.•UFG alloys are highly resistant to corrosion fatigue.•UFG alloys offer a wide scatter of fatigue data due to structural inhomogeneity.•Fatigue curve σа-lg(N) is described with the Basquin's equation σа = A⋅N−q.•Parameter A for a UFG alloy is in nonmonotonic dependence on the annealing temperature.</description><subject>Annealing</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion resistance</subject><subject>Corrosion tests</subject><subject>Crack closure</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Dependence</subject><subject>Dislocation density</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fine-grained structure</subject><subject>Fracture mechanics</subject><subject>Grain boundary</subject><subject>Grain growth</subject><subject>Metal fatigue</subject><subject>Nanoparticles</subject><subject>Nuclear engineering</subject><subject>Residual stress</subject><subject>Rotary swaging</subject><subject>Strength</subject><subject>Stress distribution</subject><subject>Swaging</subject><subject>Titanium alloys</subject><subject>Titanium base alloys</subject><subject>Ultrafines</subject><subject>Zirconium</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkNlKAzEUQIMoWKufIAR8njHbJDNPIsUNFMXlOaRZSsY2qZmM0s_yR_wmU-q7TxfuPXc7AJxiVGOE-Xlf92q51HFVE4S7GtEaM74HJrgVtGKcd_tggjrSVC1t20NwNAw9QoWkeALCLKYUBx8DdCr7xWihTkq_Qx989iVTCj7AcZmTcj7YapFUCQYGq1L18w2zzyr4cQXLCXEDn17FA1wnu1apQPMNfI5ZpQ18-VILHxbH4MCp5WBP_uIUvF1fvc5uq_vHm7vZ5X2lKRW54oYj0zKmBHdzQhrKbCOMQ4YQIZjruGpE4xznrOWEEGM757R1DZ4jjE1H6BSc7eauU_wY7ZBlH8cUykpZeMEwoxwXqtlRuigYknVynfyqnCsxklu1spd_auVWrURUFrWl72LXZ8sLn94mOWhvg7bGJ6uzNNH_M-EX42KGcg</recordid><startdate>20190625</startdate><enddate>20190625</enddate><creator>Chuvil'deev, V.N.</creator><creator>Kopylov, V.I.</creator><creator>Berendeev, N.N.</creator><creator>Murashov, A.A.</creator><creator>Nokhrin, A.V.</creator><creator>Gryaznov, M. Yu</creator><creator>Shadrina, I.S.</creator><creator>Tabachkova, N. Yu</creator><creator>Likhnitskii, C.V.</creator><creator>Kotkov, D.N.</creator><creator>Tryaev, P.V.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0328-1923</orcidid><orcidid>https://orcid.org/0000-0002-5411-6557</orcidid></search><sort><creationdate>20190625</creationdate><title>Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging</title><author>Chuvil'deev, V.N. ; Kopylov, V.I. ; Berendeev, N.N. ; Murashov, A.A. ; Nokhrin, A.V. ; Gryaznov, M. Yu ; Shadrina, I.S. ; Tabachkova, N. Yu ; Likhnitskii, C.V. ; Kotkov, D.N. ; Tryaev, P.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-6d60d844a76fb22534e57df0d22774f96a575ff66486222de9ffcef51b011d923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Annealing</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion resistance</topic><topic>Corrosion tests</topic><topic>Crack closure</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Dependence</topic><topic>Dislocation density</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fine-grained structure</topic><topic>Fracture mechanics</topic><topic>Grain boundary</topic><topic>Grain growth</topic><topic>Metal fatigue</topic><topic>Nanoparticles</topic><topic>Nuclear engineering</topic><topic>Residual stress</topic><topic>Rotary swaging</topic><topic>Strength</topic><topic>Stress distribution</topic><topic>Swaging</topic><topic>Titanium alloys</topic><topic>Titanium base alloys</topic><topic>Ultrafines</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chuvil'deev, V.N.</creatorcontrib><creatorcontrib>Kopylov, V.I.</creatorcontrib><creatorcontrib>Berendeev, N.N.</creatorcontrib><creatorcontrib>Murashov, A.A.</creatorcontrib><creatorcontrib>Nokhrin, A.V.</creatorcontrib><creatorcontrib>Gryaznov, M. Yu</creatorcontrib><creatorcontrib>Shadrina, I.S.</creatorcontrib><creatorcontrib>Tabachkova, N. Yu</creatorcontrib><creatorcontrib>Likhnitskii, C.V.</creatorcontrib><creatorcontrib>Kotkov, D.N.</creatorcontrib><creatorcontrib>Tryaev, P.V.</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chuvil'deev, V.N.</au><au>Kopylov, V.I.</au><au>Berendeev, N.N.</au><au>Murashov, A.A.</au><au>Nokhrin, A.V.</au><au>Gryaznov, M. Yu</au><au>Shadrina, I.S.</au><au>Tabachkova, N. Yu</au><au>Likhnitskii, C.V.</au><au>Kotkov, D.N.</au><au>Tryaev, P.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-06-25</date><risdate>2019</risdate><volume>790</volume><spage>347</spage><epage>362</epage><pages>347-362</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The study focuses on corrosion fatigue processes taking place in an ultrafine-grained (UFG) near-α-titanium alloy Ti-2.5Al-2.6Zr (Russian industrial name PT7M) used in nuclear engineering. UFG structure formed with Rotary Swaging is found to increase resistance to corrosion fatigue. Parameters of the Basquin's equation are defined and the slope of the fatigue curve σa-lg(N) is shown to depend (nonmonotonic dependence) on the UFG alloy annealing temperature. This effect can be explained with the patterns of microstructural evolution in a UFG alloy PT7M during annealing: (1) reduced density of lattice dislocations, (2) precipitation and dissolution of zirconium nanoparticles, (3) release of α′′-phase particles causing internal stress fields along interphase (α-α′′)-boundaries, and (4) intensive grain growth at elevated annealing temperatures. It is shown that the fatigue crack closure effect manifested as changing internal stress fields determined using XRD method may be observed in UFG titanium alloys. •UFG structure in near-α-alloy Ti-2.5Al-2.6Zr was formed with Rotary Swaging.•UFG alloys are highly resistant to corrosion fatigue.•UFG alloys offer a wide scatter of fatigue data due to structural inhomogeneity.•Fatigue curve σа-lg(N) is described with the Basquin's equation σа = A⋅N−q.•Parameter A for a UFG alloy is in nonmonotonic dependence on the annealing temperature.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.03.146</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-0328-1923</orcidid><orcidid>https://orcid.org/0000-0002-5411-6557</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-8388
ispartof Journal of alloys and compounds, 2019-06, Vol.790, p.347-362
issn 0925-8388
1873-4669
language eng
recordid cdi_proquest_journals_2227414361
source Elsevier ScienceDirect Journals
subjects Annealing
Corrosion
Corrosion fatigue
Corrosion resistance
Corrosion tests
Crack closure
Crack initiation
Crack propagation
Dependence
Dislocation density
Fatigue
Fatigue failure
Fine-grained structure
Fracture mechanics
Grain boundary
Grain growth
Metal fatigue
Nanoparticles
Nuclear engineering
Residual stress
Rotary swaging
Strength
Stress distribution
Swaging
Titanium alloys
Titanium base alloys
Ultrafines
Zirconium
title Corrosion fatigue crack initiation in ultrafine-grained near-α titanium alloy PT7M prepared by Rotary Swaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20crack%20initiation%20in%20ultrafine-grained%20near-%CE%B1%20titanium%20alloy%20PT7M%20prepared%20by%20Rotary%20Swaging&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Chuvil'deev,%20V.N.&rft.date=2019-06-25&rft.volume=790&rft.spage=347&rft.epage=362&rft.pages=347-362&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.03.146&rft_dat=%3Cproquest_cross%3E2227414361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227414361&rft_id=info:pmid/&rft_els_id=S0925838819309594&rfr_iscdi=true