A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases
Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning...
Gespeichert in:
Veröffentlicht in: | Journal of sensors 2019-01, Vol.2019 (2019), p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 2019 |
container_start_page | 1 |
container_title | Journal of sensors |
container_volume | 2019 |
creator | Rankić, Ivan Tubío, Carlos Susperregi, L. Ansuategi, Ander Gutierrez, Aitor Lenža, Libor |
description | Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models. |
doi_str_mv | 10.1155/2019/5219471 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2227359525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2227359525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-74373a9e0d9b5c215c006ffe44f8e9de2020b1204c0394d3eee19f908ae7edf03</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYsoOKdvPkvAR61L0mZtHufmn8HA4TbwrWTpzda5JZqkiN_DD2xqhz4KgXtz87uHnBNF5wTfEMJYj2LCe4wSnmbkIOqQfp7FGe3nh789ezmOTpzbYNxPsiTpRF8DdAtarnfCvlZ6hYxCExBWN_3MW-FhVYFDylg0BefRCDxIXxmNhC7RuATtK1VJ8TMKZ252whs03Qrt27VB7Y02O1M7NJOm9o3ys1ma8LxwzWWsPVgttmgkvFgKB-40OlJi6-BsX7vR4v5uPnyMJ08P4-FgEss0Zz7O0uBBcMAlXzJJCZPBllKQpioHXgLFFC8JxanECU_LBAAIVxznAjIoFU660WWr-2bNex3sFRtTN19xBaU0SxhnlAXquqWkNc5ZUMWbrUJenwXBRZN70eRe7HMP-FWLrytdio_qP_qipSEwoMQfTTih_Sz5Bg_1jmw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227359525</pqid></control><display><type>article</type><title>A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell Open Access Titles</source><source>Alma/SFX Local Collection</source><creator>Rankić, Ivan ; Tubío, Carlos ; Susperregi, L. ; Ansuategi, Ander ; Gutierrez, Aitor ; Lenža, Libor</creator><contributor>Llobet, Eduard ; Eduard Llobet</contributor><creatorcontrib>Rankić, Ivan ; Tubío, Carlos ; Susperregi, L. ; Ansuategi, Ander ; Gutierrez, Aitor ; Lenža, Libor ; Llobet, Eduard ; Eduard Llobet</creatorcontrib><description>Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2019/5219471</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Automation ; Classification ; Computer vision ; Crop diseases ; Crop production ; Crops ; Datasets ; Greenhouses ; Identification ; Industrial plants ; Information processing ; Inspection ; International conferences ; Machine learning ; Model accuracy ; Pesticides ; Pests ; Plant diseases ; Productivity ; Real time ; Response time ; Robots ; Systems design ; Tomatoes</subject><ispartof>Journal of sensors, 2019-01, Vol.2019 (2019), p.1-15</ispartof><rights>Copyright © 2019 Aitor Gutierrez et al.</rights><rights>Copyright © 2019 Aitor Gutierrez et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-74373a9e0d9b5c215c006ffe44f8e9de2020b1204c0394d3eee19f908ae7edf03</citedby><cites>FETCH-LOGICAL-c485t-74373a9e0d9b5c215c006ffe44f8e9de2020b1204c0394d3eee19f908ae7edf03</cites><orcidid>0000-0002-8500-5294</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Llobet, Eduard</contributor><contributor>Eduard Llobet</contributor><creatorcontrib>Rankić, Ivan</creatorcontrib><creatorcontrib>Tubío, Carlos</creatorcontrib><creatorcontrib>Susperregi, L.</creatorcontrib><creatorcontrib>Ansuategi, Ander</creatorcontrib><creatorcontrib>Gutierrez, Aitor</creatorcontrib><creatorcontrib>Lenža, Libor</creatorcontrib><title>A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases</title><title>Journal of sensors</title><description>Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Classification</subject><subject>Computer vision</subject><subject>Crop diseases</subject><subject>Crop production</subject><subject>Crops</subject><subject>Datasets</subject><subject>Greenhouses</subject><subject>Identification</subject><subject>Industrial plants</subject><subject>Information processing</subject><subject>Inspection</subject><subject>International conferences</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Pesticides</subject><subject>Pests</subject><subject>Plant diseases</subject><subject>Productivity</subject><subject>Real time</subject><subject>Response time</subject><subject>Robots</subject><subject>Systems design</subject><subject>Tomatoes</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF9LwzAUxYsoOKdvPkvAR61L0mZtHufmn8HA4TbwrWTpzda5JZqkiN_DD2xqhz4KgXtz87uHnBNF5wTfEMJYj2LCe4wSnmbkIOqQfp7FGe3nh789ezmOTpzbYNxPsiTpRF8DdAtarnfCvlZ6hYxCExBWN_3MW-FhVYFDylg0BefRCDxIXxmNhC7RuATtK1VJ8TMKZ252whs03Qrt27VB7Y02O1M7NJOm9o3ys1ma8LxwzWWsPVgttmgkvFgKB-40OlJi6-BsX7vR4v5uPnyMJ08P4-FgEss0Zz7O0uBBcMAlXzJJCZPBllKQpioHXgLFFC8JxanECU_LBAAIVxznAjIoFU660WWr-2bNex3sFRtTN19xBaU0SxhnlAXquqWkNc5ZUMWbrUJenwXBRZN70eRe7HMP-FWLrytdio_qP_qipSEwoMQfTTih_Sz5Bg_1jmw</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Rankić, Ivan</creator><creator>Tubío, Carlos</creator><creator>Susperregi, L.</creator><creator>Ansuategi, Ander</creator><creator>Gutierrez, Aitor</creator><creator>Lenža, Libor</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-8500-5294</orcidid></search><sort><creationdate>20190101</creationdate><title>A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases</title><author>Rankić, Ivan ; Tubío, Carlos ; Susperregi, L. ; Ansuategi, Ander ; Gutierrez, Aitor ; Lenža, Libor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-74373a9e0d9b5c215c006ffe44f8e9de2020b1204c0394d3eee19f908ae7edf03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Classification</topic><topic>Computer vision</topic><topic>Crop diseases</topic><topic>Crop production</topic><topic>Crops</topic><topic>Datasets</topic><topic>Greenhouses</topic><topic>Identification</topic><topic>Industrial plants</topic><topic>Information processing</topic><topic>Inspection</topic><topic>International conferences</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Pesticides</topic><topic>Pests</topic><topic>Plant diseases</topic><topic>Productivity</topic><topic>Real time</topic><topic>Response time</topic><topic>Robots</topic><topic>Systems design</topic><topic>Tomatoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rankić, Ivan</creatorcontrib><creatorcontrib>Tubío, Carlos</creatorcontrib><creatorcontrib>Susperregi, L.</creatorcontrib><creatorcontrib>Ansuategi, Ander</creatorcontrib><creatorcontrib>Gutierrez, Aitor</creatorcontrib><creatorcontrib>Lenža, Libor</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rankić, Ivan</au><au>Tubío, Carlos</au><au>Susperregi, L.</au><au>Ansuategi, Ander</au><au>Gutierrez, Aitor</au><au>Lenža, Libor</au><au>Llobet, Eduard</au><au>Eduard Llobet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases</atitle><jtitle>Journal of sensors</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>Greenhouse crop production is growing throughout the world and early pest detection is of particular importance in terms of productivity and reduction of the use of pesticides. Conventional eye observation methods are nonefficient for large crops. Computer vision and recent advances in deep learning can play an important role in increasing the reliability and productivity. This paper presents the development and comparison of two different approaches for vision based automated pest detection and identification, using learning strategies. A solution that combines computer vision and machine learning is compared against a deep learning solution. The main focus of our work is on the selection of the best approach based on pest detection and identification accuracy. The inspection is focused on the most harmful pests on greenhouse tomato and pepper crops, Bemisia tabaci and Trialeurodes vaporariorum. A dataset with a huge number of infected tomato plants images was created to generate and evaluate machine learning and deep learning models. The results showed that the deep learning technique provides a better solution because (a) it achieves the disease detection and classification in one step, (b) gets better accuracy, (c) can distinguish better between Bemisia tabaci and Trialeurodes vaporariorum, and (d) allows balancing between speed and accuracy by choosing different models.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/5219471</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-8500-5294</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-725X |
ispartof | Journal of sensors, 2019-01, Vol.2019 (2019), p.1-15 |
issn | 1687-725X 1687-7268 |
language | eng |
recordid | cdi_proquest_journals_2227359525 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell Open Access Titles; Alma/SFX Local Collection |
subjects | Accuracy Algorithms Artificial intelligence Automation Classification Computer vision Crop diseases Crop production Crops Datasets Greenhouses Identification Industrial plants Information processing Inspection International conferences Machine learning Model accuracy Pesticides Pests Plant diseases Productivity Real time Response time Robots Systems design Tomatoes |
title | A Benchmarking of Learning Strategies for Pest Detection and Identification on Tomato Plants for Autonomous Scouting Robots Using Internal Databases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A49%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Benchmarking%20of%20Learning%20Strategies%20for%20Pest%20Detection%20and%20Identification%20on%20Tomato%20Plants%20for%20Autonomous%20Scouting%20Robots%20Using%20Internal%20Databases&rft.jtitle=Journal%20of%20sensors&rft.au=Ranki%C4%87,%20Ivan&rft.date=2019-01-01&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2019/5219471&rft_dat=%3Cproquest_cross%3E2227359525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227359525&rft_id=info:pmid/&rfr_iscdi=true |