Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific

Upper-ocean seasonal stratification (seasonal pycnocline and/or transition layer) is a ubiquitous feature and its vertical structure has large spatial variability. The density stratification regulates the stability of the upper ocean and thus can affect the oceanic response to atmospheric forcing an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2019-10, Vol.53 (7-8), p.4667-4681
Hauptverfasser: Yamaguchi, Ryohei, Suga, Toshio, Richards, Kelvin J., Qiu, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4681
container_issue 7-8
container_start_page 4667
container_title Climate dynamics
container_volume 53
creator Yamaguchi, Ryohei
Suga, Toshio
Richards, Kelvin J.
Qiu, Bo
description Upper-ocean seasonal stratification (seasonal pycnocline and/or transition layer) is a ubiquitous feature and its vertical structure has large spatial variability. The density stratification regulates the stability of the upper ocean and thus can affect the oceanic response to atmospheric forcing and biogeochemical processes by modulating vertical mixing. In this study, we described the development of the seasonal stratification in terms of the stability of the water column, using the potential energy anomaly (PEA) as a metric based on Argo profiles. PEA budget analysis reveals that over most of the North Pacific, seasonal stratification develops under a vertical one-dimensional energy balance between an increase in PEA (i.e., a strengthening of the stratification) driven by atmospheric buoyancy forcing and a decrease in PEA associated with vertical mixing within the water column. Horizontal advection of PEA plays a significant role in the seasonal development of the stratification only in the regions of the western boundary current and equatorial current system south of 10°N. We find that, in addition to the total magnitude of the oceanic buoyancy gain, the balance between compositions of the atmospheric forcing (non-penetrating surface buoyancy forcing and penetrating radiative heating) is also important in explaining regional differences in the development of the seasonal stratification. The vertical diffusivity in the seasonal stratification estimated from the residual of the PEA budget is in the range from 5 × 10 −5  m 2  s −1 to 5 × 10 −4  m 2  s −1 and shows spatial and seasonal variability associated with local wind forcing.
doi_str_mv 10.1007/s00382-019-04816-y
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2227306918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A601368124</galeid><sourcerecordid>A601368124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-f522902ee09c6528ade4a5329c55b87981efb34cac073e004184ff36727851833</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EEsOUF2BlCQmJRcr1TxJnWZUClSqKWlhbbnqdcZXYg-0g8vZ4GgTMho0t2edc6_NHyCsGpwygfZcAhOIVsK4CqVhTLU_IhklRjlQnn5INdAKqtm7r5-RFSg8ATDYt35DpvTODD8n5geYd0nv8gWPYT-gzDZYmNCl4M9KUo8nOur6swdP5j7APubCuIOgxDgs1PkxmXKjzj_efQ8w7-sX0B_mEPLNmTPjy974l3z5cfD3_VF1df7w8P7uqeqm6XNma8w44InR9U3Nl7lGaWvCur-s71XaKob0Tsjc9tAIBJFPSWlECtapmSogteb3O3cfwfcaU9UOYY8mRNOe8FdB0BduS05UazIjaeRtKyDK0PDe5Pni0rpyfNcBEoxiXRXh7JBQm4888mDklfXl7c8y--YfdoRnzLoVxPnxfOgb5CvYxpBTR6n10k4mLZqAP5eq1XF3K1Y_l6qVIYpVSgf2A8W_A_1i_AACjpoA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2227306918</pqid></control><display><type>article</type><title>Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific</title><source>Springer Nature - Complete Springer Journals</source><creator>Yamaguchi, Ryohei ; Suga, Toshio ; Richards, Kelvin J. ; Qiu, Bo</creator><creatorcontrib>Yamaguchi, Ryohei ; Suga, Toshio ; Richards, Kelvin J. ; Qiu, Bo</creatorcontrib><description>Upper-ocean seasonal stratification (seasonal pycnocline and/or transition layer) is a ubiquitous feature and its vertical structure has large spatial variability. The density stratification regulates the stability of the upper ocean and thus can affect the oceanic response to atmospheric forcing and biogeochemical processes by modulating vertical mixing. In this study, we described the development of the seasonal stratification in terms of the stability of the water column, using the potential energy anomaly (PEA) as a metric based on Argo profiles. PEA budget analysis reveals that over most of the North Pacific, seasonal stratification develops under a vertical one-dimensional energy balance between an increase in PEA (i.e., a strengthening of the stratification) driven by atmospheric buoyancy forcing and a decrease in PEA associated with vertical mixing within the water column. Horizontal advection of PEA plays a significant role in the seasonal development of the stratification only in the regions of the western boundary current and equatorial current system south of 10°N. We find that, in addition to the total magnitude of the oceanic buoyancy gain, the balance between compositions of the atmospheric forcing (non-penetrating surface buoyancy forcing and penetrating radiative heating) is also important in explaining regional differences in the development of the seasonal stratification. The vertical diffusivity in the seasonal stratification estimated from the residual of the PEA budget is in the range from 5 × 10 −5  m 2  s −1 to 5 × 10 −4  m 2  s −1 and shows spatial and seasonal variability associated with local wind forcing.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-019-04816-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Advection ; Atmospheric forcing ; Biogeochemistry ; Boundary currents ; Buoyancy ; Climatology ; Density stratification ; Earth and Environmental Science ; Earth Sciences ; Energy balance ; Equatorial circulation ; Equatorial currents ; Geophysics/Geodesy ; Heating ; Horizontal advection ; Local winds ; Ocean currents ; Oceanic response ; Oceanography ; Oceans ; Potential energy ; Profiles ; Pycnocline ; Qiu Bo ; Radiative heating ; Regional development ; Seasonal variability ; Seasonal variation ; Seasonal variations ; Spatial variability ; Spatial variations ; Stability ; Stratification ; Transition layers ; Upper ocean ; Vertical diffusion ; Vertical distribution ; Vertical mixing ; Vertical profiles ; Water circulation ; Water column</subject><ispartof>Climate dynamics, 2019-10, Vol.53 (7-8), p.4667-4681</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2019</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-f522902ee09c6528ade4a5329c55b87981efb34cac073e004184ff36727851833</citedby><cites>FETCH-LOGICAL-c489t-f522902ee09c6528ade4a5329c55b87981efb34cac073e004184ff36727851833</cites><orcidid>0000-0002-7800-5798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-019-04816-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-019-04816-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Yamaguchi, Ryohei</creatorcontrib><creatorcontrib>Suga, Toshio</creatorcontrib><creatorcontrib>Richards, Kelvin J.</creatorcontrib><creatorcontrib>Qiu, Bo</creatorcontrib><title>Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Upper-ocean seasonal stratification (seasonal pycnocline and/or transition layer) is a ubiquitous feature and its vertical structure has large spatial variability. The density stratification regulates the stability of the upper ocean and thus can affect the oceanic response to atmospheric forcing and biogeochemical processes by modulating vertical mixing. In this study, we described the development of the seasonal stratification in terms of the stability of the water column, using the potential energy anomaly (PEA) as a metric based on Argo profiles. PEA budget analysis reveals that over most of the North Pacific, seasonal stratification develops under a vertical one-dimensional energy balance between an increase in PEA (i.e., a strengthening of the stratification) driven by atmospheric buoyancy forcing and a decrease in PEA associated with vertical mixing within the water column. Horizontal advection of PEA plays a significant role in the seasonal development of the stratification only in the regions of the western boundary current and equatorial current system south of 10°N. We find that, in addition to the total magnitude of the oceanic buoyancy gain, the balance between compositions of the atmospheric forcing (non-penetrating surface buoyancy forcing and penetrating radiative heating) is also important in explaining regional differences in the development of the seasonal stratification. The vertical diffusivity in the seasonal stratification estimated from the residual of the PEA budget is in the range from 5 × 10 −5  m 2  s −1 to 5 × 10 −4  m 2  s −1 and shows spatial and seasonal variability associated with local wind forcing.</description><subject>Advection</subject><subject>Atmospheric forcing</subject><subject>Biogeochemistry</subject><subject>Boundary currents</subject><subject>Buoyancy</subject><subject>Climatology</subject><subject>Density stratification</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Energy balance</subject><subject>Equatorial circulation</subject><subject>Equatorial currents</subject><subject>Geophysics/Geodesy</subject><subject>Heating</subject><subject>Horizontal advection</subject><subject>Local winds</subject><subject>Ocean currents</subject><subject>Oceanic response</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Potential energy</subject><subject>Profiles</subject><subject>Pycnocline</subject><subject>Qiu Bo</subject><subject>Radiative heating</subject><subject>Regional development</subject><subject>Seasonal variability</subject><subject>Seasonal variation</subject><subject>Seasonal variations</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Stability</subject><subject>Stratification</subject><subject>Transition layers</subject><subject>Upper ocean</subject><subject>Vertical diffusion</subject><subject>Vertical distribution</subject><subject>Vertical mixing</subject><subject>Vertical profiles</subject><subject>Water circulation</subject><subject>Water column</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc1u1DAURi0EEsOUF2BlCQmJRcr1TxJnWZUClSqKWlhbbnqdcZXYg-0g8vZ4GgTMho0t2edc6_NHyCsGpwygfZcAhOIVsK4CqVhTLU_IhklRjlQnn5INdAKqtm7r5-RFSg8ATDYt35DpvTODD8n5geYd0nv8gWPYT-gzDZYmNCl4M9KUo8nOur6swdP5j7APubCuIOgxDgs1PkxmXKjzj_efQ8w7-sX0B_mEPLNmTPjy974l3z5cfD3_VF1df7w8P7uqeqm6XNma8w44InR9U3Nl7lGaWvCur-s71XaKob0Tsjc9tAIBJFPSWlECtapmSogteb3O3cfwfcaU9UOYY8mRNOe8FdB0BduS05UazIjaeRtKyDK0PDe5Pni0rpyfNcBEoxiXRXh7JBQm4888mDklfXl7c8y--YfdoRnzLoVxPnxfOgb5CvYxpBTR6n10k4mLZqAP5eq1XF3K1Y_l6qVIYpVSgf2A8W_A_1i_AACjpoA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Yamaguchi, Ryohei</creator><creator>Suga, Toshio</creator><creator>Richards, Kelvin J.</creator><creator>Qiu, Bo</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-7800-5798</orcidid></search><sort><creationdate>20191001</creationdate><title>Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific</title><author>Yamaguchi, Ryohei ; Suga, Toshio ; Richards, Kelvin J. ; Qiu, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-f522902ee09c6528ade4a5329c55b87981efb34cac073e004184ff36727851833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advection</topic><topic>Atmospheric forcing</topic><topic>Biogeochemistry</topic><topic>Boundary currents</topic><topic>Buoyancy</topic><topic>Climatology</topic><topic>Density stratification</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Energy balance</topic><topic>Equatorial circulation</topic><topic>Equatorial currents</topic><topic>Geophysics/Geodesy</topic><topic>Heating</topic><topic>Horizontal advection</topic><topic>Local winds</topic><topic>Ocean currents</topic><topic>Oceanic response</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Potential energy</topic><topic>Profiles</topic><topic>Pycnocline</topic><topic>Qiu Bo</topic><topic>Radiative heating</topic><topic>Regional development</topic><topic>Seasonal variability</topic><topic>Seasonal variation</topic><topic>Seasonal variations</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Stability</topic><topic>Stratification</topic><topic>Transition layers</topic><topic>Upper ocean</topic><topic>Vertical diffusion</topic><topic>Vertical distribution</topic><topic>Vertical mixing</topic><topic>Vertical profiles</topic><topic>Water circulation</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamaguchi, Ryohei</creatorcontrib><creatorcontrib>Suga, Toshio</creatorcontrib><creatorcontrib>Richards, Kelvin J.</creatorcontrib><creatorcontrib>Qiu, Bo</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamaguchi, Ryohei</au><au>Suga, Toshio</au><au>Richards, Kelvin J.</au><au>Qiu, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>53</volume><issue>7-8</issue><spage>4667</spage><epage>4681</epage><pages>4667-4681</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Upper-ocean seasonal stratification (seasonal pycnocline and/or transition layer) is a ubiquitous feature and its vertical structure has large spatial variability. The density stratification regulates the stability of the upper ocean and thus can affect the oceanic response to atmospheric forcing and biogeochemical processes by modulating vertical mixing. In this study, we described the development of the seasonal stratification in terms of the stability of the water column, using the potential energy anomaly (PEA) as a metric based on Argo profiles. PEA budget analysis reveals that over most of the North Pacific, seasonal stratification develops under a vertical one-dimensional energy balance between an increase in PEA (i.e., a strengthening of the stratification) driven by atmospheric buoyancy forcing and a decrease in PEA associated with vertical mixing within the water column. Horizontal advection of PEA plays a significant role in the seasonal development of the stratification only in the regions of the western boundary current and equatorial current system south of 10°N. We find that, in addition to the total magnitude of the oceanic buoyancy gain, the balance between compositions of the atmospheric forcing (non-penetrating surface buoyancy forcing and penetrating radiative heating) is also important in explaining regional differences in the development of the seasonal stratification. The vertical diffusivity in the seasonal stratification estimated from the residual of the PEA budget is in the range from 5 × 10 −5  m 2  s −1 to 5 × 10 −4  m 2  s −1 and shows spatial and seasonal variability associated with local wind forcing.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-019-04816-y</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7800-5798</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2019-10, Vol.53 (7-8), p.4667-4681
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2227306918
source Springer Nature - Complete Springer Journals
subjects Advection
Atmospheric forcing
Biogeochemistry
Boundary currents
Buoyancy
Climatology
Density stratification
Earth and Environmental Science
Earth Sciences
Energy balance
Equatorial circulation
Equatorial currents
Geophysics/Geodesy
Heating
Horizontal advection
Local winds
Ocean currents
Oceanic response
Oceanography
Oceans
Potential energy
Profiles
Pycnocline
Qiu Bo
Radiative heating
Regional development
Seasonal variability
Seasonal variation
Seasonal variations
Spatial variability
Spatial variations
Stability
Stratification
Transition layers
Upper ocean
Vertical diffusion
Vertical distribution
Vertical mixing
Vertical profiles
Water circulation
Water column
title Diagnosing the development of seasonal stratification using the potential energy anomaly in the North Pacific
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A46%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20the%20development%20of%20seasonal%20stratification%20using%20the%20potential%20energy%20anomaly%20in%20the%20North%20Pacific&rft.jtitle=Climate%20dynamics&rft.au=Yamaguchi,%20Ryohei&rft.date=2019-10-01&rft.volume=53&rft.issue=7-8&rft.spage=4667&rft.epage=4681&rft.pages=4667-4681&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-019-04816-y&rft_dat=%3Cgale_proqu%3EA601368124%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2227306918&rft_id=info:pmid/&rft_galeid=A601368124&rfr_iscdi=true