Interaction between lactate dehydrogenase and tween 80 in aqueous solution
The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH...
Gespeichert in:
Veröffentlicht in: | Pharmaceutical research 2002-04, Vol.19 (4), p.504-510 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 510 |
---|---|
container_issue | 4 |
container_start_page | 504 |
container_title | Pharmaceutical research |
container_volume | 19 |
creator | HILLGREN, Anna EVERTSSON, Hans ALDEN, Maggie |
description | The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely.
Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used.
The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations. |
doi_str_mv | 10.1023/A:1015156031381 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_222709397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>404179231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-807d81aaced61f19f2ef52e9d18221947ef0ebaeb4392270ff25b70ed366f3c83</originalsourceid><addsrcrecordid>eNpFkM1Lw0AQxRdRbK2evckieIzO7CbZjbdS_KgUvCh4C5vsrKakm5pNkP73pjTiaRjm92beG8YuEW4RhLyb3yNggkkKEqXGIzbFRMkog_jjmE1BiTjSKsYJOwthDQAas_iUTVCAlFKrKXtZ-o5aU3ZV43lB3Q-R5_XQm464pa-dbZtP8iYQN97yw1wDrzw33z01feChqfu9_JydOFMHuhjrjL0_PrwtnqPV69NyMV9FpUToIg3KajSmJJuiw8wJcomgzKIWYrCnyAEVhopYZkIocE4khQKyMk2dLLWcsevD3m3bDBZCl6-bvvXDyVzsBZnM1ABdjVBfbMjm27bamHaX_yUfgJsRMKE0tWuNL6vwz0k1PFal8hdcf2c1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222709397</pqid></control><display><type>article</type><title>Interaction between lactate dehydrogenase and tween 80 in aqueous solution</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>HILLGREN, Anna ; EVERTSSON, Hans ; ALDEN, Maggie</creator><creatorcontrib>HILLGREN, Anna ; EVERTSSON, Hans ; ALDEN, Maggie</creatorcontrib><description>The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely.
Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used.
The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1023/A:1015156031381</identifier><identifier>PMID: 12033387</identifier><identifier>CODEN: PHREEB</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>Animals ; Biological and medical sciences ; Calorimetry, Differential Scanning - methods ; Dehydrogenases ; Drug Interactions ; General pharmacology ; L-Lactate Dehydrogenase - chemistry ; L-Lactate Dehydrogenase - pharmacokinetics ; Medical sciences ; Pharmaceutical Solutions - chemistry ; Pharmaceutical Solutions - pharmacokinetics ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Phase transitions ; Polysorbates - chemistry ; Polysorbates - pharmacokinetics ; Proteins ; Pyrenes - pharmacokinetics ; Rabbits ; Software ; Spectrometry, Fluorescence - methods ; Spectrum analysis ; Surfactants ; Viscosity ; Water - chemistry</subject><ispartof>Pharmaceutical research, 2002-04, Vol.19 (4), p.504-510</ispartof><rights>2002 INIST-CNRS</rights><rights>Copyright Kluwer Academic Publishers Apr 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-807d81aaced61f19f2ef52e9d18221947ef0ebaeb4392270ff25b70ed366f3c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13701576$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12033387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>HILLGREN, Anna</creatorcontrib><creatorcontrib>EVERTSSON, Hans</creatorcontrib><creatorcontrib>ALDEN, Maggie</creatorcontrib><title>Interaction between lactate dehydrogenase and tween 80 in aqueous solution</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><description>The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely.
Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used.
The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calorimetry, Differential Scanning - methods</subject><subject>Dehydrogenases</subject><subject>Drug Interactions</subject><subject>General pharmacology</subject><subject>L-Lactate Dehydrogenase - chemistry</subject><subject>L-Lactate Dehydrogenase - pharmacokinetics</subject><subject>Medical sciences</subject><subject>Pharmaceutical Solutions - chemistry</subject><subject>Pharmaceutical Solutions - pharmacokinetics</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Phase transitions</subject><subject>Polysorbates - chemistry</subject><subject>Polysorbates - pharmacokinetics</subject><subject>Proteins</subject><subject>Pyrenes - pharmacokinetics</subject><subject>Rabbits</subject><subject>Software</subject><subject>Spectrometry, Fluorescence - methods</subject><subject>Spectrum analysis</subject><subject>Surfactants</subject><subject>Viscosity</subject><subject>Water - chemistry</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNpFkM1Lw0AQxRdRbK2evckieIzO7CbZjbdS_KgUvCh4C5vsrKakm5pNkP73pjTiaRjm92beG8YuEW4RhLyb3yNggkkKEqXGIzbFRMkog_jjmE1BiTjSKsYJOwthDQAas_iUTVCAlFKrKXtZ-o5aU3ZV43lB3Q-R5_XQm464pa-dbZtP8iYQN97yw1wDrzw33z01feChqfu9_JydOFMHuhjrjL0_PrwtnqPV69NyMV9FpUToIg3KajSmJJuiw8wJcomgzKIWYrCnyAEVhopYZkIocE4khQKyMk2dLLWcsevD3m3bDBZCl6-bvvXDyVzsBZnM1ABdjVBfbMjm27bamHaX_yUfgJsRMKE0tWuNL6vwz0k1PFal8hdcf2c1</recordid><startdate>20020401</startdate><enddate>20020401</enddate><creator>HILLGREN, Anna</creator><creator>EVERTSSON, Hans</creator><creator>ALDEN, Maggie</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20020401</creationdate><title>Interaction between lactate dehydrogenase and tween 80 in aqueous solution</title><author>HILLGREN, Anna ; EVERTSSON, Hans ; ALDEN, Maggie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-807d81aaced61f19f2ef52e9d18221947ef0ebaeb4392270ff25b70ed366f3c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calorimetry, Differential Scanning - methods</topic><topic>Dehydrogenases</topic><topic>Drug Interactions</topic><topic>General pharmacology</topic><topic>L-Lactate Dehydrogenase - chemistry</topic><topic>L-Lactate Dehydrogenase - pharmacokinetics</topic><topic>Medical sciences</topic><topic>Pharmaceutical Solutions - chemistry</topic><topic>Pharmaceutical Solutions - pharmacokinetics</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Phase transitions</topic><topic>Polysorbates - chemistry</topic><topic>Polysorbates - pharmacokinetics</topic><topic>Proteins</topic><topic>Pyrenes - pharmacokinetics</topic><topic>Rabbits</topic><topic>Software</topic><topic>Spectrometry, Fluorescence - methods</topic><topic>Spectrum analysis</topic><topic>Surfactants</topic><topic>Viscosity</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HILLGREN, Anna</creatorcontrib><creatorcontrib>EVERTSSON, Hans</creatorcontrib><creatorcontrib>ALDEN, Maggie</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HILLGREN, Anna</au><au>EVERTSSON, Hans</au><au>ALDEN, Maggie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interaction between lactate dehydrogenase and tween 80 in aqueous solution</atitle><jtitle>Pharmaceutical research</jtitle><addtitle>Pharm Res</addtitle><date>2002-04-01</date><risdate>2002</risdate><volume>19</volume><issue>4</issue><spage>504</spage><epage>510</epage><pages>504-510</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><coden>PHREEB</coden><abstract>The weak aqueous interaction between the protein lactate dehydrogenase (LDH) and the nonionic surfactant Tween 80 has been investigated, because weak protein-amphiphile interactions are of significant importance in pharmaceutical formulations, but are experimentally hard to determine. The system LDH/sodium dodecyl sulphate (SDS) was used as reference because SDS, by its strong protein binding, denatures LDH completely.
Fluorescence spectroscopy with pyrene and 1,3-bis(lphenyl)propane (P3P) as probes, intrinsic protein fluorescence and NMR spectroscopy have been used.
The fluorescence probe pyrene monitors a weak Tween-LDH interaction, detectable below the critical micelle concentration of ordinary Tween micelles. The microviscosity probe P3P shows a surfactant-induced denaturation in the case of LDH/SDS but not in the case of LDH/Tween 80. Intrinsic LDH fluorescence verifies this behavior. Pulsed-gradient spin-echo NMR was also used to verify the weak LDH-Tween 80 interaction. CONCLUSIONS. A weak interaction between LDH and Tween 80 occurs at hydrophobic zones of the protein, but it is not strong enough to denature LDH. The experimental outline used here provides a useful approach for mapping the very weak protein-amphiphile interactions often present in pharmaceutical formulations.</abstract><cop>New York, NY</cop><pub>Springer</pub><pmid>12033387</pmid><doi>10.1023/A:1015156031381</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0724-8741 |
ispartof | Pharmaceutical research, 2002-04, Vol.19 (4), p.504-510 |
issn | 0724-8741 1573-904X |
language | eng |
recordid | cdi_proquest_journals_222709397 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Animals Biological and medical sciences Calorimetry, Differential Scanning - methods Dehydrogenases Drug Interactions General pharmacology L-Lactate Dehydrogenase - chemistry L-Lactate Dehydrogenase - pharmacokinetics Medical sciences Pharmaceutical Solutions - chemistry Pharmaceutical Solutions - pharmacokinetics Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Phase transitions Polysorbates - chemistry Polysorbates - pharmacokinetics Proteins Pyrenes - pharmacokinetics Rabbits Software Spectrometry, Fluorescence - methods Spectrum analysis Surfactants Viscosity Water - chemistry |
title | Interaction between lactate dehydrogenase and tween 80 in aqueous solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T06%3A54%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interaction%20between%20lactate%20dehydrogenase%20and%20tween%2080%20in%20aqueous%20solution&rft.jtitle=Pharmaceutical%20research&rft.au=HILLGREN,%20Anna&rft.date=2002-04-01&rft.volume=19&rft.issue=4&rft.spage=504&rft.epage=510&rft.pages=504-510&rft.issn=0724-8741&rft.eissn=1573-904X&rft.coden=PHREEB&rft_id=info:doi/10.1023/A:1015156031381&rft_dat=%3Cproquest_pubme%3E404179231%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222709397&rft_id=info:pmid/12033387&rfr_iscdi=true |