Effect of the Cytochrome P450 2C19 Inhibitor Omeprazole on the Pharmacokinetics and Safety Profile of Bortezomib in Patients with Advanced Solid Tumours, Non-Hodgkin’s Lymphoma or Multiple Myeloma

Background and objective: Bortezomib, an antineoplastic for the treatment of relapsed multiple myeloma and mantle cell lymphoma, undergoes metabolism through oxidative deboronation by cytochrome P450 (CYP) enzymes, primarily CYP3A4 and CYP2C19. Omeprazole, a proton-pump inhibitor, is primarily metab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical pharmacokinetics 2009-01, Vol.48 (3), p.199-209
Hauptverfasser: Quinn, David I., Nemunaitis, John, Fuloria, Jyotsna, Britten, Carolyn D., Gabrail, Nashat, Yee, Lorrin, Acharya, Milin, Chan, Kai, Cohen, Nadine, Dudov, Assen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Background and objective: Bortezomib, an antineoplastic for the treatment of relapsed multiple myeloma and mantle cell lymphoma, undergoes metabolism through oxidative deboronation by cytochrome P450 (CYP) enzymes, primarily CYP3A4 and CYP2C19. Omeprazole, a proton-pump inhibitor, is primarily metabolized by and demonstrates high affinity for CYP2C19. This study investigated whether coadministration of omeprazole affected the pharmacokinetics, pharmacodynamics and safety profile of bortezomib in patients with advanced cancer. The variability of bortezomib pharmacokinetics with CYP enzyme polymorphism was also investigated. Patients and methods: This open-label, crossover, pharmacokinetic drug-drug interaction study was conducted at seven institutions in the US and Europe between January 2005 and August 2006. Patients who had advanced solid tumours, non-Hodgkin’s lymphoma or multiple myeloma, were aged ≥18 years, weighed ≥50 kg and had a life expectancy of ≥3 months were eligible. Patients received bortezomib 1.3 mg/m 2 on days 1, 4, 8 and 11 for two 21-day cycles, plus omeprazole 40 mg in the morning of days 6–10 and in the evening of day 8 in either cycle 1 (sequence 1) or cycle 2 (sequence 2). On day 21 of cycle 2, patients benefiting from therapy could continue to receive bortezomib for six additional cycles. Blood samples for pharmacokinetic/ pharmacodynamic evaluation were collected prior to and at various timepoints after bortezomib administration on day 8 of cycles 1 and 2. Blood samples for pharmacogenomics were also collected. Pharmacokinetic parameters were calculated by noncompartmental analysis of plasma concentration-time data for bortezomib administration on day 8 of cycles 1 and 2, using WinNonlin™ version 4.0. 1.a software. The pharmacodynamic profile was assessed using a whole-blood 20S proteasome inhibition assay. Results: Twenty-seven patients (median age 64 years) were enrolled, 12 in sequence 1 and 15 in sequence 2, including eight and nine pharmacokinetic-evaluable patients, respectively. Bortezomib pharmacokinetic parameters were similar when bortezomib was administered alone or with omeprazole (maximum plasma concentration 120 vs 123 ng/mL; area under the plasma concentration-time curve from 0 to 72 hours 129 vs 135 ng · h/mL). The pharmacodynamic parameters were also similar (maximum effect 85.8% vs 93.7%; area under the percent inhibition-time curve over 72 hours 4052 vs 3910 % × h); the differences were not statistically signific
ISSN:0312-5963
1179-1926
DOI:10.2165/00003088-200948030-00006