Robust fast finite-time sliding mode control for industrial robot manipulators

In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of dynamics and control 2019-06, Vol.7 (2), p.607-618
Hauptverfasser: Gambhire, S. J., Sri Kanth, K. S., Malvatkar, G. M., Londhe, P. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 2
container_start_page 607
container_title International journal of dynamics and control
container_volume 7
creator Gambhire, S. J.
Sri Kanth, K. S.
Malvatkar, G. M.
Londhe, P. S.
description In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.
doi_str_mv 10.1007/s40435-018-0476-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226817633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226817633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPEcz-ejHURa_YFEQBW8hTZMlS9usSXrw39tS0ZOXmTm8zwzzIHQJ9BooLW-SoIJLQqEiVJQFgRO0YlBLwoq6Ov2dq49ztEnpQCllICgT9Qo9v4ZmTBk7PRc_-GxJ9r3FqfOtH_a4D63FJgw5hg67ELEf2gmIXnc4hiZk3OvBH8dO5xDTBTpzukt289PX6P3-7m37SHYvD0_b2x0xjAMQ7lwBwpXGSgau0kK2jdauZhKosbWx4IxhwGvnQNessNJIoWUpeVG0jW35Gl0te48xfI42ZXUIYxymk4qx6VMoC86nFCwpE0NK0Tp1jL7X8UsBVbM5tZhTkzk1m1MwMWxh0pQd9jb-bf4f-gY4Z3HI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226817633</pqid></control><display><type>article</type><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><source>SpringerLink Journals</source><creator>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</creator><creatorcontrib>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</creatorcontrib><description>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-018-0476-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Closed loops ; Comparative studies ; Complexity ; Control ; Control and Systems Theory ; Control stability ; Control theory ; Dynamical Systems ; Engineering ; Error reduction ; Feedback control ; Industrial robots ; Interactive control ; Interactive systems ; Manipulators ; Parameter uncertainty ; Robot arms ; Robot control ; Robust control ; Simulation ; Sliding mode control ; Stability augmentation ; Tracking control ; Tracking errors ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-06, Vol.7 (2), p.607-618</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</citedby><cites>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-018-0476-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-018-0476-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gambhire, S. J.</creatorcontrib><creatorcontrib>Sri Kanth, K. S.</creatorcontrib><creatorcontrib>Malvatkar, G. M.</creatorcontrib><creatorcontrib>Londhe, P. S.</creatorcontrib><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</description><subject>Closed loops</subject><subject>Comparative studies</subject><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Feedback control</subject><subject>Industrial robots</subject><subject>Interactive control</subject><subject>Interactive systems</subject><subject>Manipulators</subject><subject>Parameter uncertainty</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robust control</subject><subject>Simulation</subject><subject>Sliding mode control</subject><subject>Stability augmentation</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPEcz-ejHURa_YFEQBW8hTZMlS9usSXrw39tS0ZOXmTm8zwzzIHQJ9BooLW-SoIJLQqEiVJQFgRO0YlBLwoq6Ov2dq49ztEnpQCllICgT9Qo9v4ZmTBk7PRc_-GxJ9r3FqfOtH_a4D63FJgw5hg67ELEf2gmIXnc4hiZk3OvBH8dO5xDTBTpzukt289PX6P3-7m37SHYvD0_b2x0xjAMQ7lwBwpXGSgau0kK2jdauZhKosbWx4IxhwGvnQNessNJIoWUpeVG0jW35Gl0te48xfI42ZXUIYxymk4qx6VMoC86nFCwpE0NK0Tp1jL7X8UsBVbM5tZhTkzk1m1MwMWxh0pQd9jb-bf4f-gY4Z3HI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gambhire, S. J.</creator><creator>Sri Kanth, K. S.</creator><creator>Malvatkar, G. M.</creator><creator>Londhe, P. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><author>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed loops</topic><topic>Comparative studies</topic><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Feedback control</topic><topic>Industrial robots</topic><topic>Interactive control</topic><topic>Interactive systems</topic><topic>Manipulators</topic><topic>Parameter uncertainty</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robust control</topic><topic>Simulation</topic><topic>Sliding mode control</topic><topic>Stability augmentation</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Gambhire, S. J.</creatorcontrib><creatorcontrib>Sri Kanth, K. S.</creatorcontrib><creatorcontrib>Malvatkar, G. M.</creatorcontrib><creatorcontrib>Londhe, P. S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gambhire, S. J.</au><au>Sri Kanth, K. S.</au><au>Malvatkar, G. M.</au><au>Londhe, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fast finite-time sliding mode control for industrial robot manipulators</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>607</spage><epage>618</epage><pages>607-618</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-018-0476-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2195-268X
ispartof International journal of dynamics and control, 2019-06, Vol.7 (2), p.607-618
issn 2195-268X
2195-2698
language eng
recordid cdi_proquest_journals_2226817633
source SpringerLink Journals
subjects Closed loops
Comparative studies
Complexity
Control
Control and Systems Theory
Control stability
Control theory
Dynamical Systems
Engineering
Error reduction
Feedback control
Industrial robots
Interactive control
Interactive systems
Manipulators
Parameter uncertainty
Robot arms
Robot control
Robust control
Simulation
Sliding mode control
Stability augmentation
Tracking control
Tracking errors
Vibration
title Robust fast finite-time sliding mode control for industrial robot manipulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fast%20finite-time%20sliding%20mode%20control%20for%20industrial%20robot%20manipulators&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Gambhire,%20S.%20J.&rft.date=2019-06-01&rft.volume=7&rft.issue=2&rft.spage=607&rft.epage=618&rft.pages=607-618&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-018-0476-1&rft_dat=%3Cproquest_cross%3E2226817633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226817633&rft_id=info:pmid/&rfr_iscdi=true