Robust fast finite-time sliding mode control for industrial robot manipulators
In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode con...
Gespeichert in:
Veröffentlicht in: | International journal of dynamics and control 2019-06, Vol.7 (2), p.607-618 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 2 |
container_start_page | 607 |
container_title | International journal of dynamics and control |
container_volume | 7 |
creator | Gambhire, S. J. Sri Kanth, K. S. Malvatkar, G. M. Londhe, P. S. |
description | In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced. |
doi_str_mv | 10.1007/s40435-018-0476-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226817633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226817633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wFPEcz-ejHURa_YFEQBW8hTZMlS9usSXrw39tS0ZOXmTm8zwzzIHQJ9BooLW-SoIJLQqEiVJQFgRO0YlBLwoq6Ov2dq49ztEnpQCllICgT9Qo9v4ZmTBk7PRc_-GxJ9r3FqfOtH_a4D63FJgw5hg67ELEf2gmIXnc4hiZk3OvBH8dO5xDTBTpzukt289PX6P3-7m37SHYvD0_b2x0xjAMQ7lwBwpXGSgau0kK2jdauZhKosbWx4IxhwGvnQNessNJIoWUpeVG0jW35Gl0te48xfI42ZXUIYxymk4qx6VMoC86nFCwpE0NK0Tp1jL7X8UsBVbM5tZhTkzk1m1MwMWxh0pQd9jb-bf4f-gY4Z3HI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226817633</pqid></control><display><type>article</type><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><source>SpringerLink Journals</source><creator>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</creator><creatorcontrib>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</creatorcontrib><description>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</description><identifier>ISSN: 2195-268X</identifier><identifier>EISSN: 2195-2698</identifier><identifier>DOI: 10.1007/s40435-018-0476-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Closed loops ; Comparative studies ; Complexity ; Control ; Control and Systems Theory ; Control stability ; Control theory ; Dynamical Systems ; Engineering ; Error reduction ; Feedback control ; Industrial robots ; Interactive control ; Interactive systems ; Manipulators ; Parameter uncertainty ; Robot arms ; Robot control ; Robust control ; Simulation ; Sliding mode control ; Stability augmentation ; Tracking control ; Tracking errors ; Vibration</subject><ispartof>International journal of dynamics and control, 2019-06, Vol.7 (2), p.607-618</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</citedby><cites>FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40435-018-0476-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40435-018-0476-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gambhire, S. J.</creatorcontrib><creatorcontrib>Sri Kanth, K. S.</creatorcontrib><creatorcontrib>Malvatkar, G. M.</creatorcontrib><creatorcontrib>Londhe, P. S.</creatorcontrib><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><title>International journal of dynamics and control</title><addtitle>Int. J. Dynam. Control</addtitle><description>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</description><subject>Closed loops</subject><subject>Comparative studies</subject><subject>Complexity</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Control stability</subject><subject>Control theory</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error reduction</subject><subject>Feedback control</subject><subject>Industrial robots</subject><subject>Interactive control</subject><subject>Interactive systems</subject><subject>Manipulators</subject><subject>Parameter uncertainty</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>Robust control</subject><subject>Simulation</subject><subject>Sliding mode control</subject><subject>Stability augmentation</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Vibration</subject><issn>2195-268X</issn><issn>2195-2698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouKz7A7wFPEcz-ejHURa_YFEQBW8hTZMlS9usSXrw39tS0ZOXmTm8zwzzIHQJ9BooLW-SoIJLQqEiVJQFgRO0YlBLwoq6Ov2dq49ztEnpQCllICgT9Qo9v4ZmTBk7PRc_-GxJ9r3FqfOtH_a4D63FJgw5hg67ELEf2gmIXnc4hiZk3OvBH8dO5xDTBTpzukt289PX6P3-7m37SHYvD0_b2x0xjAMQ7lwBwpXGSgau0kK2jdauZhKosbWx4IxhwGvnQNessNJIoWUpeVG0jW35Gl0te48xfI42ZXUIYxymk4qx6VMoC86nFCwpE0NK0Tp1jL7X8UsBVbM5tZhTkzk1m1MwMWxh0pQd9jb-bf4f-gY4Z3HI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gambhire, S. J.</creator><creator>Sri Kanth, K. S.</creator><creator>Malvatkar, G. M.</creator><creator>Londhe, P. S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Robust fast finite-time sliding mode control for industrial robot manipulators</title><author>Gambhire, S. J. ; Sri Kanth, K. S. ; Malvatkar, G. M. ; Londhe, P. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2311-3ff614f7ce521f8a45dbaaf92510ce9ce1fcc2139ff1a926e5c54a575366dbed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Closed loops</topic><topic>Comparative studies</topic><topic>Complexity</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Control stability</topic><topic>Control theory</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error reduction</topic><topic>Feedback control</topic><topic>Industrial robots</topic><topic>Interactive control</topic><topic>Interactive systems</topic><topic>Manipulators</topic><topic>Parameter uncertainty</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>Robust control</topic><topic>Simulation</topic><topic>Sliding mode control</topic><topic>Stability augmentation</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Gambhire, S. J.</creatorcontrib><creatorcontrib>Sri Kanth, K. S.</creatorcontrib><creatorcontrib>Malvatkar, G. M.</creatorcontrib><creatorcontrib>Londhe, P. S.</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of dynamics and control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gambhire, S. J.</au><au>Sri Kanth, K. S.</au><au>Malvatkar, G. M.</au><au>Londhe, P. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust fast finite-time sliding mode control for industrial robot manipulators</atitle><jtitle>International journal of dynamics and control</jtitle><stitle>Int. J. Dynam. Control</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>607</spage><epage>618</epage><pages>607-618</pages><issn>2195-268X</issn><eissn>2195-2698</eissn><abstract>In this work, a robust fast finite-time sliding mode control (RFFTSMC) approach is developed for industrial robot manipulator (IRM) system involved for tasks of interactive manipulation. The robust position tracking control is accomplished by the design of non-singular fast terminal sliding mode controller (TSMC) with disturbance estimator and tested using a two-link IRM system influenced by parameter uncertainties and external disturbances. This arrangement not only guarantees finite and faster convergence of the systems states to the equilibrium from anywhere in the phase-plane but also remove the difficulty of singularity associated with traditional TSMC. Additionally, owing to the interfering observer augmented in said control law, the overall stability of the closed-loop system is enhanced. The practicality of suggested RFFTSMC is acknowledged by carrying out the comparative study of the well-known controllers from the literature. Simulation results demonstrate that the tracking error can be reduced efficiently and robustness of the closed loop system has been enhanced.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40435-018-0476-1</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-268X |
ispartof | International journal of dynamics and control, 2019-06, Vol.7 (2), p.607-618 |
issn | 2195-268X 2195-2698 |
language | eng |
recordid | cdi_proquest_journals_2226817633 |
source | SpringerLink Journals |
subjects | Closed loops Comparative studies Complexity Control Control and Systems Theory Control stability Control theory Dynamical Systems Engineering Error reduction Feedback control Industrial robots Interactive control Interactive systems Manipulators Parameter uncertainty Robot arms Robot control Robust control Simulation Sliding mode control Stability augmentation Tracking control Tracking errors Vibration |
title | Robust fast finite-time sliding mode control for industrial robot manipulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A35%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20fast%20finite-time%20sliding%20mode%20control%20for%20industrial%20robot%20manipulators&rft.jtitle=International%20journal%20of%20dynamics%20and%20control&rft.au=Gambhire,%20S.%20J.&rft.date=2019-06-01&rft.volume=7&rft.issue=2&rft.spage=607&rft.epage=618&rft.pages=607-618&rft.issn=2195-268X&rft.eissn=2195-2698&rft_id=info:doi/10.1007/s40435-018-0476-1&rft_dat=%3Cproquest_cross%3E2226817633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226817633&rft_id=info:pmid/&rfr_iscdi=true |