Experimental demonstration of quantum walks with initial superposition states
The preparation of initial superposition states of discrete-time quantum walks (DTQWs) is necessary for the study and applications of DTQWs. Based on an encoding method, here, we propose a DTQW protocol in linear optics, which enables the preparation of arbitrary initial superposition states of the...
Gespeichert in:
Veröffentlicht in: | npj quantum information 2019-05, Vol.5 (1), Article 40 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The preparation of initial superposition states of discrete-time quantum walks (DTQWs) is necessary for the study and applications of DTQWs. Based on an encoding method, here, we propose a DTQW protocol in linear optics, which enables the preparation of arbitrary initial superposition states of the walker and the coin and enables to obtain the states of the DTQW in addition to the probability distribution of the walker. With this protocol, we experimentally demonstrate the DTQW in the polarization space with both the walker and the coin initially in superposition states, by using only passive linear-optical elements. The effects of the walker’s different initial superposition states on the spread speed of the DTQW and on the entanglement between the coin and the walker are also experimentally investigated, which have not been reported before. When the walker starts with superposition states, we show that the properties of DTQWs are very different from those of DTQWs starting with a single position. Our findings reveal different properties of DTQWs and pave an avenue to study DTQWs with arbitrary initial states. Moreover, this encoding method enables one to encode an arbitrary high-dimensional quantum state, using a single physical qubit, and may be adopted to implement other quantum information tasks. |
---|---|
ISSN: | 2056-6387 2056-6387 |
DOI: | 10.1038/s41534-019-0155-x |