Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system

A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2019-05, Vol.175, p.423-433
Hauptverfasser: Rezk, Hegazy, Sayed, Enas Taha, Al-Dhaifallah, Mujahed, Obaid, M., El-Sayed, Abou Hashema M., Abdelkareem, Mohammad Ali, Olabi, A.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 433
container_issue
container_start_page 423
container_title Energy (Oxford)
container_volume 175
creator Rezk, Hegazy
Sayed, Enas Taha
Al-Dhaifallah, Mujahed
Obaid, M.
El-Sayed, Abou Hashema M.
Abdelkareem, Mohammad Ali
Olabi, A.G.
description A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources. [Display omitted] •Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.
doi_str_mv 10.1016/j.energy.2019.02.167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226766686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219303731</els_id><sourcerecordid>2226766686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU5YO4ljX5BQxZ9UiQucLdfZFEdpHGy3qG9PqnDmtHuYmd35CLllkDNg4r7LccCwPeYcmMqB50zUZ2TBZF1kopbVOVlAISCrypJfkqsYOwCopFILsnveY08t9j01kZqBYtuiTe6AdM6kMflgtkjdQAMeMESkPu58dJE2GE3vBpOcH-jYmyHR0f9gwIZujnT88skffJ-MszQeY8LdNbloTR_x5m8uyefz08fqNVu_v7ytHteZLZlKmQCpeDuVgKJAKBhvoZTKtrwAZLUqYYMWN6qqVC2mzUoj26qxipdKKlmpYknu5twx-O89xqQ7vw_DdFJzzkUthJBiUpWzygYfY8BWj8HtTDhqBvoEVnd6hqBPYDVwPf002R5mG04NDg6DjtbhYLFxYUKnG-_-D_gFHaqEwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226766686</pqid></control><display><type>article</type><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</creator><creatorcontrib>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</creatorcontrib><description>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources. [Display omitted] •Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.02.167</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Brackish water ; Brackish water desalination ; Computer simulation ; Configuration management ; Configurations ; Converters ; Cylinders ; Desalination ; Desalination plants ; Diesel fuels ; Economic models ; Electricity pricing ; Electrolytic cells ; Energy efficiency ; Energy sources ; Energy storage ; Fuel cells ; Fuel technology ; Hybrid systems ; Minimum cost ; Photovoltaic cells ; Photovoltaics ; Renewable energy sources ; Renewable resources ; Reverse osmosis ; Reverse osmosis desalination ; Solar cells ; Stand-alone hybrid system ; Technology assessment</subject><ispartof>Energy (Oxford), 2019-05, Vol.175, p.423-433</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</citedby><cites>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</cites><orcidid>0000-0003-3248-9843 ; 0000-0002-8441-2146 ; 0000-0001-9209-3619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.02.167$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Al-Dhaifallah, Mujahed</creatorcontrib><creatorcontrib>Obaid, M.</creatorcontrib><creatorcontrib>El-Sayed, Abou Hashema M.</creatorcontrib><creatorcontrib>Abdelkareem, Mohammad Ali</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><title>Energy (Oxford)</title><description>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources. [Display omitted] •Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</description><subject>Alternative energy sources</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Computer simulation</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Converters</subject><subject>Cylinders</subject><subject>Desalination</subject><subject>Desalination plants</subject><subject>Diesel fuels</subject><subject>Economic models</subject><subject>Electricity pricing</subject><subject>Electrolytic cells</subject><subject>Energy efficiency</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hybrid systems</subject><subject>Minimum cost</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Reverse osmosis</subject><subject>Reverse osmosis desalination</subject><subject>Solar cells</subject><subject>Stand-alone hybrid system</subject><subject>Technology assessment</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU5YO4ljX5BQxZ9UiQucLdfZFEdpHGy3qG9PqnDmtHuYmd35CLllkDNg4r7LccCwPeYcmMqB50zUZ2TBZF1kopbVOVlAISCrypJfkqsYOwCopFILsnveY08t9j01kZqBYtuiTe6AdM6kMflgtkjdQAMeMESkPu58dJE2GE3vBpOcH-jYmyHR0f9gwIZujnT88skffJ-MszQeY8LdNbloTR_x5m8uyefz08fqNVu_v7ytHteZLZlKmQCpeDuVgKJAKBhvoZTKtrwAZLUqYYMWN6qqVC2mzUoj26qxipdKKlmpYknu5twx-O89xqQ7vw_DdFJzzkUthJBiUpWzygYfY8BWj8HtTDhqBvoEVnd6hqBPYDVwPf002R5mG04NDg6DjtbhYLFxYUKnG-_-D_gFHaqEwA</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Rezk, Hegazy</creator><creator>Sayed, Enas Taha</creator><creator>Al-Dhaifallah, Mujahed</creator><creator>Obaid, M.</creator><creator>El-Sayed, Abou Hashema M.</creator><creator>Abdelkareem, Mohammad Ali</creator><creator>Olabi, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><orcidid>https://orcid.org/0000-0002-8441-2146</orcidid><orcidid>https://orcid.org/0000-0001-9209-3619</orcidid></search><sort><creationdate>20190515</creationdate><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><author>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Computer simulation</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Converters</topic><topic>Cylinders</topic><topic>Desalination</topic><topic>Desalination plants</topic><topic>Diesel fuels</topic><topic>Economic models</topic><topic>Electricity pricing</topic><topic>Electrolytic cells</topic><topic>Energy efficiency</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hybrid systems</topic><topic>Minimum cost</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Reverse osmosis</topic><topic>Reverse osmosis desalination</topic><topic>Solar cells</topic><topic>Stand-alone hybrid system</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Al-Dhaifallah, Mujahed</creatorcontrib><creatorcontrib>Obaid, M.</creatorcontrib><creatorcontrib>El-Sayed, Abou Hashema M.</creatorcontrib><creatorcontrib>Abdelkareem, Mohammad Ali</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezk, Hegazy</au><au>Sayed, Enas Taha</au><au>Al-Dhaifallah, Mujahed</au><au>Obaid, M.</au><au>El-Sayed, Abou Hashema M.</au><au>Abdelkareem, Mohammad Ali</au><au>Olabi, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>175</volume><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources. [Display omitted] •Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.02.167</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><orcidid>https://orcid.org/0000-0002-8441-2146</orcidid><orcidid>https://orcid.org/0000-0001-9209-3619</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2019-05, Vol.175, p.423-433
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2226766686
source Access via ScienceDirect (Elsevier)
subjects Alternative energy sources
Brackish water
Brackish water desalination
Computer simulation
Configuration management
Configurations
Converters
Cylinders
Desalination
Desalination plants
Diesel fuels
Economic models
Electricity pricing
Electrolytic cells
Energy efficiency
Energy sources
Energy storage
Fuel cells
Fuel technology
Hybrid systems
Minimum cost
Photovoltaic cells
Photovoltaics
Renewable energy sources
Renewable resources
Reverse osmosis
Reverse osmosis desalination
Solar cells
Stand-alone hybrid system
Technology assessment
title Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20cell%20as%20an%20effective%20energy%20storage%20in%20reverse%20osmosis%20desalination%20plant%20powered%20by%20photovoltaic%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Rezk,%20Hegazy&rft.date=2019-05-15&rft.volume=175&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.02.167&rft_dat=%3Cproquest_cross%3E2226766686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226766686&rft_id=info:pmid/&rft_els_id=S0360544219303731&rfr_iscdi=true