Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system
A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas....
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2019-05, Vol.175, p.423-433 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 433 |
---|---|
container_issue | |
container_start_page | 423 |
container_title | Energy (Oxford) |
container_volume | 175 |
creator | Rezk, Hegazy Sayed, Enas Taha Al-Dhaifallah, Mujahed Obaid, M. El-Sayed, Abou Hashema M. Abdelkareem, Mohammad Ali Olabi, A.G. |
description | A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources.
[Display omitted]
•Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km. |
doi_str_mv | 10.1016/j.energy.2019.02.167 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226766686</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544219303731</els_id><sourcerecordid>2226766686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</originalsourceid><addsrcrecordid>eNp9kM1OwzAQhC0EEqXwBhwscU5YO4ljX5BQxZ9UiQucLdfZFEdpHGy3qG9PqnDmtHuYmd35CLllkDNg4r7LccCwPeYcmMqB50zUZ2TBZF1kopbVOVlAISCrypJfkqsYOwCopFILsnveY08t9j01kZqBYtuiTe6AdM6kMflgtkjdQAMeMESkPu58dJE2GE3vBpOcH-jYmyHR0f9gwIZujnT88skffJ-MszQeY8LdNbloTR_x5m8uyefz08fqNVu_v7ytHteZLZlKmQCpeDuVgKJAKBhvoZTKtrwAZLUqYYMWN6qqVC2mzUoj26qxipdKKlmpYknu5twx-O89xqQ7vw_DdFJzzkUthJBiUpWzygYfY8BWj8HtTDhqBvoEVnd6hqBPYDVwPf002R5mG04NDg6DjtbhYLFxYUKnG-_-D_gFHaqEwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226766686</pqid></control><display><type>article</type><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</creator><creatorcontrib>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</creatorcontrib><description>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources.
[Display omitted]
•Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2019.02.167</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative energy sources ; Brackish water ; Brackish water desalination ; Computer simulation ; Configuration management ; Configurations ; Converters ; Cylinders ; Desalination ; Desalination plants ; Diesel fuels ; Economic models ; Electricity pricing ; Electrolytic cells ; Energy efficiency ; Energy sources ; Energy storage ; Fuel cells ; Fuel technology ; Hybrid systems ; Minimum cost ; Photovoltaic cells ; Photovoltaics ; Renewable energy sources ; Renewable resources ; Reverse osmosis ; Reverse osmosis desalination ; Solar cells ; Stand-alone hybrid system ; Technology assessment</subject><ispartof>Energy (Oxford), 2019-05, Vol.175, p.423-433</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</citedby><cites>FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</cites><orcidid>0000-0003-3248-9843 ; 0000-0002-8441-2146 ; 0000-0001-9209-3619</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2019.02.167$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3554,27933,27934,46004</link.rule.ids></links><search><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Al-Dhaifallah, Mujahed</creatorcontrib><creatorcontrib>Obaid, M.</creatorcontrib><creatorcontrib>El-Sayed, Abou Hashema M.</creatorcontrib><creatorcontrib>Abdelkareem, Mohammad Ali</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><title>Energy (Oxford)</title><description>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources.
[Display omitted]
•Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</description><subject>Alternative energy sources</subject><subject>Brackish water</subject><subject>Brackish water desalination</subject><subject>Computer simulation</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Converters</subject><subject>Cylinders</subject><subject>Desalination</subject><subject>Desalination plants</subject><subject>Diesel fuels</subject><subject>Economic models</subject><subject>Electricity pricing</subject><subject>Electrolytic cells</subject><subject>Energy efficiency</subject><subject>Energy sources</subject><subject>Energy storage</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Hybrid systems</subject><subject>Minimum cost</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Reverse osmosis</subject><subject>Reverse osmosis desalination</subject><subject>Solar cells</subject><subject>Stand-alone hybrid system</subject><subject>Technology assessment</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OwzAQhC0EEqXwBhwscU5YO4ljX5BQxZ9UiQucLdfZFEdpHGy3qG9PqnDmtHuYmd35CLllkDNg4r7LccCwPeYcmMqB50zUZ2TBZF1kopbVOVlAISCrypJfkqsYOwCopFILsnveY08t9j01kZqBYtuiTe6AdM6kMflgtkjdQAMeMESkPu58dJE2GE3vBpOcH-jYmyHR0f9gwIZujnT88skffJ-MszQeY8LdNbloTR_x5m8uyefz08fqNVu_v7ytHteZLZlKmQCpeDuVgKJAKBhvoZTKtrwAZLUqYYMWN6qqVC2mzUoj26qxipdKKlmpYknu5twx-O89xqQ7vw_DdFJzzkUthJBiUpWzygYfY8BWj8HtTDhqBvoEVnd6hqBPYDVwPf002R5mG04NDg6DjtbhYLFxYUKnG-_-D_gFHaqEwA</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Rezk, Hegazy</creator><creator>Sayed, Enas Taha</creator><creator>Al-Dhaifallah, Mujahed</creator><creator>Obaid, M.</creator><creator>El-Sayed, Abou Hashema M.</creator><creator>Abdelkareem, Mohammad Ali</creator><creator>Olabi, A.G.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><orcidid>https://orcid.org/0000-0002-8441-2146</orcidid><orcidid>https://orcid.org/0000-0001-9209-3619</orcidid></search><sort><creationdate>20190515</creationdate><title>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</title><author>Rezk, Hegazy ; Sayed, Enas Taha ; Al-Dhaifallah, Mujahed ; Obaid, M. ; El-Sayed, Abou Hashema M. ; Abdelkareem, Mohammad Ali ; Olabi, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-60892f167033e0312f0489cf230e17940beceb955976ecec8a8f5dc9249898593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternative energy sources</topic><topic>Brackish water</topic><topic>Brackish water desalination</topic><topic>Computer simulation</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Converters</topic><topic>Cylinders</topic><topic>Desalination</topic><topic>Desalination plants</topic><topic>Diesel fuels</topic><topic>Economic models</topic><topic>Electricity pricing</topic><topic>Electrolytic cells</topic><topic>Energy efficiency</topic><topic>Energy sources</topic><topic>Energy storage</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Hybrid systems</topic><topic>Minimum cost</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Reverse osmosis</topic><topic>Reverse osmosis desalination</topic><topic>Solar cells</topic><topic>Stand-alone hybrid system</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rezk, Hegazy</creatorcontrib><creatorcontrib>Sayed, Enas Taha</creatorcontrib><creatorcontrib>Al-Dhaifallah, Mujahed</creatorcontrib><creatorcontrib>Obaid, M.</creatorcontrib><creatorcontrib>El-Sayed, Abou Hashema M.</creatorcontrib><creatorcontrib>Abdelkareem, Mohammad Ali</creatorcontrib><creatorcontrib>Olabi, A.G.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rezk, Hegazy</au><au>Sayed, Enas Taha</au><au>Al-Dhaifallah, Mujahed</au><au>Obaid, M.</au><au>El-Sayed, Abou Hashema M.</au><au>Abdelkareem, Mohammad Ali</au><au>Olabi, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system</atitle><jtitle>Energy (Oxford)</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>175</volume><spage>423</spage><epage>433</epage><pages>423-433</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>A hybrid renewable energy systems (HRESs) comprises of photovoltaic (PV), and self-charging fuel cells (SCFC) is designed for securing electrical energy required to operate brackish water pumping (BWP) and reverse osmosis desalination (RO) plant of 150 m3 d-1 for irrigation purposes in remote areas. An optimal configuration of the proposed design is determined based on minimum cost of energy (COE) and the minimum total net present cost (NPC). Moreover, a comparison with a stand-alone diesel generation (DG) or grid extension is carried out against the optimal configuration of PV/SCFC HRES. The modeling, simulation, and techno-economic evaluation of the different proposed systems, including the PV/SCFC system are done using HOMER software. Results show that PV array (66 kW), FC (9 kW), converter (25 KW) –Electrolyzer (15 kW), Hydrogen cylinder (70 kg) are the viable economic option with a total NPC of $115,649 and $0.062 unit cost of electricity. The COE for the stand-alone DG system is 0.206 $/kWh, which is 69.90% higher than that of the PV/SCFC system. The PV/SCFC system is cheaper than grid extension. This study opens the way for using a fuel cell as an effective method for solving the energy intermittence/storage problems of renewable energy sources.
[Display omitted]
•Standalone hybrid photovoltaic and self-charging fuel cell (PV/SCFC) is proposed for RO.•Optimal PV/SCFC is better than diesel generation (DG).•COE and NPC are the lowest in PV/FC system compared to those in DG system.•PV/SCFC BWP/RO system is economical viable than grid extension up to 8.21 km.•DG is economical viable than grid extension up to 41.5 km.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2019.02.167</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3248-9843</orcidid><orcidid>https://orcid.org/0000-0002-8441-2146</orcidid><orcidid>https://orcid.org/0000-0001-9209-3619</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2019-05, Vol.175, p.423-433 |
issn | 0360-5442 1873-6785 |
language | eng |
recordid | cdi_proquest_journals_2226766686 |
source | Access via ScienceDirect (Elsevier) |
subjects | Alternative energy sources Brackish water Brackish water desalination Computer simulation Configuration management Configurations Converters Cylinders Desalination Desalination plants Diesel fuels Economic models Electricity pricing Electrolytic cells Energy efficiency Energy sources Energy storage Fuel cells Fuel technology Hybrid systems Minimum cost Photovoltaic cells Photovoltaics Renewable energy sources Renewable resources Reverse osmosis Reverse osmosis desalination Solar cells Stand-alone hybrid system Technology assessment |
title | Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T12%3A40%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%20cell%20as%20an%20effective%20energy%20storage%20in%20reverse%20osmosis%20desalination%20plant%20powered%20by%20photovoltaic%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Rezk,%20Hegazy&rft.date=2019-05-15&rft.volume=175&rft.spage=423&rft.epage=433&rft.pages=423-433&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2019.02.167&rft_dat=%3Cproquest_cross%3E2226766686%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226766686&rft_id=info:pmid/&rft_els_id=S0360544219303731&rfr_iscdi=true |