Thermoelectric properties of p-type MnSe
Semiconducting manganese selenide (MnSe), crystalizing in a cubic structure with a wide band gap, is focused on in this work for its potential as an ecofriendly thermoelectric material. Pristine MnSe exhibits a low carrier concentration of ∼1.3 × 1017 cm−3 at room temperature, which can be dramatica...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2019-06, Vol.789, p.953-959 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 959 |
---|---|
container_issue | |
container_start_page | 953 |
container_title | Journal of alloys and compounds |
container_volume | 789 |
creator | Zheng, Liangtao Li, Juan Zhou, Binqiang Liu, Hongxia Bu, Zhonglin Chen, Bo Ang, Ran Li, Wen |
description | Semiconducting manganese selenide (MnSe), crystalizing in a cubic structure with a wide band gap, is focused on in this work for its potential as an ecofriendly thermoelectric material. Pristine MnSe exhibits a low carrier concentration of ∼1.3 × 1017 cm−3 at room temperature, which can be dramatically increased to ∼2.6 × 1021 cm−3 primarily resulting from the Mn-vacancy introduced by Na-doping at Mn site. The broad range of carrier concentration not only enables a reliable prediction of the electrical transport properties using a single parabolic band (SPB) model with the acoustic scattering, but also provides a well understanding of its underlying material physics. Such a doping and the simultaneously induced Mn-vacancies provide additional phonon scattering, leading to a reduced lattice thermal conductivity of ∼1.2 W/m-K at high temperatures.
•A systematic investigation is carried out on thermoelectric properties of MnSe.•SPB model enables a well prediction on electronic transport properties.•Introduced point defects and precipitates effectively reduce the κL.•Underlying physics of MnSe are well understood by the SPB model. |
doi_str_mv | 10.1016/j.jallcom.2019.03.140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226764104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838819309478</els_id><sourcerecordid>2226764104</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-c28fef68d82a27eda71932af9ae46157c53e66b20e2b4fcd126aad85c7b938293</originalsourceid><addsrcrecordid>eNqFkE1LwzAYx4MoOKcfQSh48dKaPGmT9CQyfIOJB-c5ZOkTTOmWmnSC396M7e7pufzfnh8h14xWjDJx11e9GQYbNhVQ1laUV6ymJ2TGlORlLUR7Sma0haZUXKlzcpFST2lWcjYjt6svjJuAA9opeluMMYwYJ4-pCK4Yy-l3xOJt-4GX5MyZIeHV8c7J59PjavFSLt-fXxcPy9JyLqfSgnLohOoUGJDYGZl7wLjWYC1YI23DUYg1UIR17WzHQBjTqcbKdcsVtHxObg65ecn3DtOk-7CL21ypAUBIUTNaZ1VzUNkYUoro9Bj9xsRfzajeQ9G9PkLReyiacp2hZN_9wYf5hR-PUSfrcWux8zET0F3w_yT8Afx0bFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226764104</pqid></control><display><type>article</type><title>Thermoelectric properties of p-type MnSe</title><source>Elsevier ScienceDirect Journals</source><creator>Zheng, Liangtao ; Li, Juan ; Zhou, Binqiang ; Liu, Hongxia ; Bu, Zhonglin ; Chen, Bo ; Ang, Ran ; Li, Wen</creator><creatorcontrib>Zheng, Liangtao ; Li, Juan ; Zhou, Binqiang ; Liu, Hongxia ; Bu, Zhonglin ; Chen, Bo ; Ang, Ran ; Li, Wen</creatorcontrib><description>Semiconducting manganese selenide (MnSe), crystalizing in a cubic structure with a wide band gap, is focused on in this work for its potential as an ecofriendly thermoelectric material. Pristine MnSe exhibits a low carrier concentration of ∼1.3 × 1017 cm−3 at room temperature, which can be dramatically increased to ∼2.6 × 1021 cm−3 primarily resulting from the Mn-vacancy introduced by Na-doping at Mn site. The broad range of carrier concentration not only enables a reliable prediction of the electrical transport properties using a single parabolic band (SPB) model with the acoustic scattering, but also provides a well understanding of its underlying material physics. Such a doping and the simultaneously induced Mn-vacancies provide additional phonon scattering, leading to a reduced lattice thermal conductivity of ∼1.2 W/m-K at high temperatures.
•A systematic investigation is carried out on thermoelectric properties of MnSe.•SPB model enables a well prediction on electronic transport properties.•Introduced point defects and precipitates effectively reduce the κL.•Underlying physics of MnSe are well understood by the SPB model.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2019.03.140</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Acoustic properties ; Acoustic scattering ; Carrier concentration ; Carrier density ; Doping ; Electrical resistivity ; Lattice thermal conductivity ; Lattice vacancies ; Manganese ; MnSe ; Na-doping ; P-type semiconductors ; Scattering ; Thermal conductivity ; Thermoelectric ; Thermoelectric materials ; Thermoelectricity ; Transport properties</subject><ispartof>Journal of alloys and compounds, 2019-06, Vol.789, p.953-959</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-c28fef68d82a27eda71932af9ae46157c53e66b20e2b4fcd126aad85c7b938293</citedby><cites>FETCH-LOGICAL-c337t-c28fef68d82a27eda71932af9ae46157c53e66b20e2b4fcd126aad85c7b938293</cites><orcidid>0000-0002-7229-9668 ; 0000-0001-7515-3042 ; 0000-0001-8912-3792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838819309478$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Zheng, Liangtao</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zhou, Binqiang</creatorcontrib><creatorcontrib>Liu, Hongxia</creatorcontrib><creatorcontrib>Bu, Zhonglin</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Ang, Ran</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><title>Thermoelectric properties of p-type MnSe</title><title>Journal of alloys and compounds</title><description>Semiconducting manganese selenide (MnSe), crystalizing in a cubic structure with a wide band gap, is focused on in this work for its potential as an ecofriendly thermoelectric material. Pristine MnSe exhibits a low carrier concentration of ∼1.3 × 1017 cm−3 at room temperature, which can be dramatically increased to ∼2.6 × 1021 cm−3 primarily resulting from the Mn-vacancy introduced by Na-doping at Mn site. The broad range of carrier concentration not only enables a reliable prediction of the electrical transport properties using a single parabolic band (SPB) model with the acoustic scattering, but also provides a well understanding of its underlying material physics. Such a doping and the simultaneously induced Mn-vacancies provide additional phonon scattering, leading to a reduced lattice thermal conductivity of ∼1.2 W/m-K at high temperatures.
•A systematic investigation is carried out on thermoelectric properties of MnSe.•SPB model enables a well prediction on electronic transport properties.•Introduced point defects and precipitates effectively reduce the κL.•Underlying physics of MnSe are well understood by the SPB model.</description><subject>Acoustic properties</subject><subject>Acoustic scattering</subject><subject>Carrier concentration</subject><subject>Carrier density</subject><subject>Doping</subject><subject>Electrical resistivity</subject><subject>Lattice thermal conductivity</subject><subject>Lattice vacancies</subject><subject>Manganese</subject><subject>MnSe</subject><subject>Na-doping</subject><subject>P-type semiconductors</subject><subject>Scattering</subject><subject>Thermal conductivity</subject><subject>Thermoelectric</subject><subject>Thermoelectric materials</subject><subject>Thermoelectricity</subject><subject>Transport properties</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYx4MoOKcfQSh48dKaPGmT9CQyfIOJB-c5ZOkTTOmWmnSC396M7e7pufzfnh8h14xWjDJx11e9GQYbNhVQ1laUV6ymJ2TGlORlLUR7Sma0haZUXKlzcpFST2lWcjYjt6svjJuAA9opeluMMYwYJ4-pCK4Yy-l3xOJt-4GX5MyZIeHV8c7J59PjavFSLt-fXxcPy9JyLqfSgnLohOoUGJDYGZl7wLjWYC1YI23DUYg1UIR17WzHQBjTqcbKdcsVtHxObg65ecn3DtOk-7CL21ypAUBIUTNaZ1VzUNkYUoro9Bj9xsRfzajeQ9G9PkLReyiacp2hZN_9wYf5hR-PUSfrcWux8zET0F3w_yT8Afx0bFU</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Zheng, Liangtao</creator><creator>Li, Juan</creator><creator>Zhou, Binqiang</creator><creator>Liu, Hongxia</creator><creator>Bu, Zhonglin</creator><creator>Chen, Bo</creator><creator>Ang, Ran</creator><creator>Li, Wen</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7229-9668</orcidid><orcidid>https://orcid.org/0000-0001-7515-3042</orcidid><orcidid>https://orcid.org/0000-0001-8912-3792</orcidid></search><sort><creationdate>20190615</creationdate><title>Thermoelectric properties of p-type MnSe</title><author>Zheng, Liangtao ; Li, Juan ; Zhou, Binqiang ; Liu, Hongxia ; Bu, Zhonglin ; Chen, Bo ; Ang, Ran ; Li, Wen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-c28fef68d82a27eda71932af9ae46157c53e66b20e2b4fcd126aad85c7b938293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic properties</topic><topic>Acoustic scattering</topic><topic>Carrier concentration</topic><topic>Carrier density</topic><topic>Doping</topic><topic>Electrical resistivity</topic><topic>Lattice thermal conductivity</topic><topic>Lattice vacancies</topic><topic>Manganese</topic><topic>MnSe</topic><topic>Na-doping</topic><topic>P-type semiconductors</topic><topic>Scattering</topic><topic>Thermal conductivity</topic><topic>Thermoelectric</topic><topic>Thermoelectric materials</topic><topic>Thermoelectricity</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Liangtao</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><creatorcontrib>Zhou, Binqiang</creatorcontrib><creatorcontrib>Liu, Hongxia</creatorcontrib><creatorcontrib>Bu, Zhonglin</creatorcontrib><creatorcontrib>Chen, Bo</creatorcontrib><creatorcontrib>Ang, Ran</creatorcontrib><creatorcontrib>Li, Wen</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Liangtao</au><au>Li, Juan</au><au>Zhou, Binqiang</au><au>Liu, Hongxia</au><au>Bu, Zhonglin</au><au>Chen, Bo</au><au>Ang, Ran</au><au>Li, Wen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermoelectric properties of p-type MnSe</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2019-06-15</date><risdate>2019</risdate><volume>789</volume><spage>953</spage><epage>959</epage><pages>953-959</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Semiconducting manganese selenide (MnSe), crystalizing in a cubic structure with a wide band gap, is focused on in this work for its potential as an ecofriendly thermoelectric material. Pristine MnSe exhibits a low carrier concentration of ∼1.3 × 1017 cm−3 at room temperature, which can be dramatically increased to ∼2.6 × 1021 cm−3 primarily resulting from the Mn-vacancy introduced by Na-doping at Mn site. The broad range of carrier concentration not only enables a reliable prediction of the electrical transport properties using a single parabolic band (SPB) model with the acoustic scattering, but also provides a well understanding of its underlying material physics. Such a doping and the simultaneously induced Mn-vacancies provide additional phonon scattering, leading to a reduced lattice thermal conductivity of ∼1.2 W/m-K at high temperatures.
•A systematic investigation is carried out on thermoelectric properties of MnSe.•SPB model enables a well prediction on electronic transport properties.•Introduced point defects and precipitates effectively reduce the κL.•Underlying physics of MnSe are well understood by the SPB model.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2019.03.140</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7229-9668</orcidid><orcidid>https://orcid.org/0000-0001-7515-3042</orcidid><orcidid>https://orcid.org/0000-0001-8912-3792</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2019-06, Vol.789, p.953-959 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_proquest_journals_2226764104 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic properties Acoustic scattering Carrier concentration Carrier density Doping Electrical resistivity Lattice thermal conductivity Lattice vacancies Manganese MnSe Na-doping P-type semiconductors Scattering Thermal conductivity Thermoelectric Thermoelectric materials Thermoelectricity Transport properties |
title | Thermoelectric properties of p-type MnSe |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermoelectric%20properties%20of%20p-type%20MnSe&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Zheng,%20Liangtao&rft.date=2019-06-15&rft.volume=789&rft.spage=953&rft.epage=959&rft.pages=953-959&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2019.03.140&rft_dat=%3Cproquest_cross%3E2226764104%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226764104&rft_id=info:pmid/&rft_els_id=S0925838819309478&rfr_iscdi=true |