Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types
Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three malware types capable of attacking smart grid netwo...
Gespeichert in:
Veröffentlicht in: | Journal of Computer Virology and Hacking Techniques 2019-06, Vol.15 (2), p.109-125 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125 |
---|---|
container_issue | 2 |
container_start_page | 109 |
container_title | Journal of Computer Virology and Hacking Techniques |
container_volume | 15 |
creator | Eder-Neuhauser, Peter Zseby, Tanja Fabini, Joachim |
description | Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three malware types capable of attacking smart grid networks in the ns3 simulation environment. First, an aggressive malware type, named the
pandemic
malware, follows a topological-scan strategy to find and infect all devices on the network in the shortest time possible, via a brute force approach. Next, the more intelligent
endemic
malware sacrifices speed for stealthiness and operates with a less conspicuous hit-list and permutation-scan strategy. Finally, a highly stealthy malware type called the
contagion
malware does not scan the network or initiate any connections but rather appends on legitimate communication flows. We define several metrics to express the infection speed, scanning efficiency, stealthiness, and complexity of malware and use those metrics to compare the three malware types. Our simulations provide details on the scanning and propagation behavior of different malware classes. Furthermore, this work allows the assessment of the detectability of different malware types. |
doi_str_mv | 10.1007/s11416-018-0325-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226489926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226489926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-286005ad82be1b86722e9d755f8df5a9a51d8e68c601405dba1aef2900cf75c43</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EElXoD-BmiSuGtRMnDjdU8ZKKuMDZcpNNcWke2K6q_HtcpRJcOO2uNDOr-Qi55HDDAYpbz3nGcwZcMUiFZOMJmQmRp0wVaXr6Zz8nc-83AMCFVEUuZwRfzXZvHNLB9YNZm2D7jtqO-ta4QNfO1rTDsO_dl7-jLQZnK39NvW1320lruppWfTsYZ308-4aGT4dI22NuGAf0F-SsMVuP8-NMyMfjw_vimS3fnl4W90tWpbIMTKgcQJpaiRXylcoLIbCsCykbVTfSlEbyWmGuqhx4BrJeGW6wESVA1RSyytKEXE25sc33Dn3Qm37nuvhSiwghU2UZUSSET6rK9d47bPTgbOw7ag76AFRPQHUEqg9A9Rg9YvL4qO3W6H6T_zf9AFMpeiE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226489926</pqid></control><display><type>article</type><title>Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Eder-Neuhauser, Peter ; Zseby, Tanja ; Fabini, Joachim</creator><creatorcontrib>Eder-Neuhauser, Peter ; Zseby, Tanja ; Fabini, Joachim</creatorcontrib><description>Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three malware types capable of attacking smart grid networks in the ns3 simulation environment. First, an aggressive malware type, named the
pandemic
malware, follows a topological-scan strategy to find and infect all devices on the network in the shortest time possible, via a brute force approach. Next, the more intelligent
endemic
malware sacrifices speed for stealthiness and operates with a less conspicuous hit-list and permutation-scan strategy. Finally, a highly stealthy malware type called the
contagion
malware does not scan the network or initiate any connections but rather appends on legitimate communication flows. We define several metrics to express the infection speed, scanning efficiency, stealthiness, and complexity of malware and use those metrics to compare the three malware types. Our simulations provide details on the scanning and propagation behavior of different malware classes. Furthermore, this work allows the assessment of the detectability of different malware types.</description><identifier>ISSN: 2263-8733</identifier><identifier>EISSN: 2263-8733</identifier><identifier>DOI: 10.1007/s11416-018-0325-y</identifier><language>eng</language><publisher>Paris: Springer Paris</publisher><subject>Computer Science ; Cybersecurity ; Electronic devices ; Malware ; Original Paper ; Permutations ; Propagation ; Scanning ; Simulation ; Smart grid</subject><ispartof>Journal of Computer Virology and Hacking Techniques, 2019-06, Vol.15 (2), p.109-125</ispartof><rights>The Author(s) 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-286005ad82be1b86722e9d755f8df5a9a51d8e68c601405dba1aef2900cf75c43</citedby><cites>FETCH-LOGICAL-c359t-286005ad82be1b86722e9d755f8df5a9a51d8e68c601405dba1aef2900cf75c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11416-018-0325-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11416-018-0325-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Eder-Neuhauser, Peter</creatorcontrib><creatorcontrib>Zseby, Tanja</creatorcontrib><creatorcontrib>Fabini, Joachim</creatorcontrib><title>Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types</title><title>Journal of Computer Virology and Hacking Techniques</title><addtitle>J Comput Virol Hack Tech</addtitle><description>Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three malware types capable of attacking smart grid networks in the ns3 simulation environment. First, an aggressive malware type, named the
pandemic
malware, follows a topological-scan strategy to find and infect all devices on the network in the shortest time possible, via a brute force approach. Next, the more intelligent
endemic
malware sacrifices speed for stealthiness and operates with a less conspicuous hit-list and permutation-scan strategy. Finally, a highly stealthy malware type called the
contagion
malware does not scan the network or initiate any connections but rather appends on legitimate communication flows. We define several metrics to express the infection speed, scanning efficiency, stealthiness, and complexity of malware and use those metrics to compare the three malware types. Our simulations provide details on the scanning and propagation behavior of different malware classes. Furthermore, this work allows the assessment of the detectability of different malware types.</description><subject>Computer Science</subject><subject>Cybersecurity</subject><subject>Electronic devices</subject><subject>Malware</subject><subject>Original Paper</subject><subject>Permutations</subject><subject>Propagation</subject><subject>Scanning</subject><subject>Simulation</subject><subject>Smart grid</subject><issn>2263-8733</issn><issn>2263-8733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kEtPwzAQhC0EElXoD-BmiSuGtRMnDjdU8ZKKuMDZcpNNcWke2K6q_HtcpRJcOO2uNDOr-Qi55HDDAYpbz3nGcwZcMUiFZOMJmQmRp0wVaXr6Zz8nc-83AMCFVEUuZwRfzXZvHNLB9YNZm2D7jtqO-ta4QNfO1rTDsO_dl7-jLQZnK39NvW1320lruppWfTsYZ308-4aGT4dI22NuGAf0F-SsMVuP8-NMyMfjw_vimS3fnl4W90tWpbIMTKgcQJpaiRXylcoLIbCsCykbVTfSlEbyWmGuqhx4BrJeGW6wESVA1RSyytKEXE25sc33Dn3Qm37nuvhSiwghU2UZUSSET6rK9d47bPTgbOw7ag76AFRPQHUEqg9A9Rg9YvL4qO3W6H6T_zf9AFMpeiE</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Eder-Neuhauser, Peter</creator><creator>Zseby, Tanja</creator><creator>Fabini, Joachim</creator><general>Springer Paris</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types</title><author>Eder-Neuhauser, Peter ; Zseby, Tanja ; Fabini, Joachim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-286005ad82be1b86722e9d755f8df5a9a51d8e68c601405dba1aef2900cf75c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computer Science</topic><topic>Cybersecurity</topic><topic>Electronic devices</topic><topic>Malware</topic><topic>Original Paper</topic><topic>Permutations</topic><topic>Propagation</topic><topic>Scanning</topic><topic>Simulation</topic><topic>Smart grid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eder-Neuhauser, Peter</creatorcontrib><creatorcontrib>Zseby, Tanja</creatorcontrib><creatorcontrib>Fabini, Joachim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eder-Neuhauser, Peter</au><au>Zseby, Tanja</au><au>Fabini, Joachim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types</atitle><jtitle>Journal of Computer Virology and Hacking Techniques</jtitle><stitle>J Comput Virol Hack Tech</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>15</volume><issue>2</issue><spage>109</spage><epage>125</epage><pages>109-125</pages><issn>2263-8733</issn><eissn>2263-8733</eissn><abstract>Smart grids utilize communication technologies that make them vulnerable to cyber attacks. The power grid is a critical infrastructure that constitutes a tempting target for sophisticated and well-equipped attackers. In this paper we simulate three malware types capable of attacking smart grid networks in the ns3 simulation environment. First, an aggressive malware type, named the
pandemic
malware, follows a topological-scan strategy to find and infect all devices on the network in the shortest time possible, via a brute force approach. Next, the more intelligent
endemic
malware sacrifices speed for stealthiness and operates with a less conspicuous hit-list and permutation-scan strategy. Finally, a highly stealthy malware type called the
contagion
malware does not scan the network or initiate any connections but rather appends on legitimate communication flows. We define several metrics to express the infection speed, scanning efficiency, stealthiness, and complexity of malware and use those metrics to compare the three malware types. Our simulations provide details on the scanning and propagation behavior of different malware classes. Furthermore, this work allows the assessment of the detectability of different malware types.</abstract><cop>Paris</cop><pub>Springer Paris</pub><doi>10.1007/s11416-018-0325-y</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2263-8733 |
ispartof | Journal of Computer Virology and Hacking Techniques, 2019-06, Vol.15 (2), p.109-125 |
issn | 2263-8733 2263-8733 |
language | eng |
recordid | cdi_proquest_journals_2226489926 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Computer Science Cybersecurity Electronic devices Malware Original Paper Permutations Propagation Scanning Simulation Smart grid |
title | Malware propagation in smart grid networks: metrics, simulation and comparison of three malware types |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A43%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Malware%20propagation%20in%20smart%20grid%20networks:%20metrics,%20simulation%20and%20comparison%20of%20three%20malware%20types&rft.jtitle=Journal%20of%20Computer%20Virology%20and%20Hacking%20Techniques&rft.au=Eder-Neuhauser,%20Peter&rft.date=2019-06-01&rft.volume=15&rft.issue=2&rft.spage=109&rft.epage=125&rft.pages=109-125&rft.issn=2263-8733&rft.eissn=2263-8733&rft_id=info:doi/10.1007/s11416-018-0325-y&rft_dat=%3Cproquest_cross%3E2226489926%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226489926&rft_id=info:pmid/&rfr_iscdi=true |