A subspace SQP method for equality constrained optimization
In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of...
Gespeichert in:
Veröffentlicht in: | Computational optimization and applications 2019-09, Vol.74 (1), p.177-194 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 194 |
---|---|
container_issue | 1 |
container_start_page | 177 |
container_title | Computational optimization and applications |
container_volume | 74 |
creator | Lee, Jae Hwa Jung, Yoon Mo Yuan, Ya-xiang Yun, Sangwoon |
description | In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model. |
doi_str_mv | 10.1007/s10589-019-00109-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226293678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226293678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpE0TXA2DXzCgoq7Da5Jqh5mmk7SL8ddbreDOxeNu7rkPDiHnDC4ZQHmVGBRKU2DjAQNN5QGZsaIUlCudH5IZaC6pBBDH5CSlNQDoUvAZuV5kaahSh9ZnL89P2db3H8FldYiZ3w24afp9ZkOb-ohN610Wur7ZNp_YN6E9JUc1bpI_-805ebu9eV3e09Xj3cNysaJWMN1TBM6xrnJX2Vqi8M773DpZO40cVSEYWudqLGWhlKpYpZVCXuii9DJHZ1HMycW028WwG3zqzToMsR1fGs655FrIUo0tPrVsDClFX5suNluMe8PAfEsykyQzSjI_kowcITFBaSy37z7-Tf9DfQGlN2sD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226293678</pqid></control><display><type>article</type><title>A subspace SQP method for equality constrained optimization</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</creator><creatorcontrib>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</creatorcontrib><description>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-019-00109-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Constraints ; Convex and Discrete Geometry ; Management Science ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Penalty function ; Statistics ; Subspace methods ; Subspaces</subject><ispartof>Computational optimization and applications, 2019-09, Vol.74 (1), p.177-194</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</citedby><cites>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</cites><orcidid>0000-0002-5782-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-019-00109-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-019-00109-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Yuan, Ya-xiang</creatorcontrib><creatorcontrib>Yun, Sangwoon</creatorcontrib><title>A subspace SQP method for equality constrained optimization</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</description><subject>Constraints</subject><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Statistics</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpE0TXA2DXzCgoq7Da5Jqh5mmk7SL8ddbreDOxeNu7rkPDiHnDC4ZQHmVGBRKU2DjAQNN5QGZsaIUlCudH5IZaC6pBBDH5CSlNQDoUvAZuV5kaahSh9ZnL89P2db3H8FldYiZ3w24afp9ZkOb-ohN610Wur7ZNp_YN6E9JUc1bpI_-805ebu9eV3e09Xj3cNysaJWMN1TBM6xrnJX2Vqi8M773DpZO40cVSEYWudqLGWhlKpYpZVCXuii9DJHZ1HMycW028WwG3zqzToMsR1fGs655FrIUo0tPrVsDClFX5suNluMe8PAfEsykyQzSjI_kowcITFBaSy37z7-Tf9DfQGlN2sD</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lee, Jae Hwa</creator><creator>Jung, Yoon Mo</creator><creator>Yuan, Ya-xiang</creator><creator>Yun, Sangwoon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5782-7266</orcidid></search><sort><creationdate>20190901</creationdate><title>A subspace SQP method for equality constrained optimization</title><author>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constraints</topic><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Statistics</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Yuan, Ya-xiang</creatorcontrib><creatorcontrib>Yun, Sangwoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae Hwa</au><au>Jung, Yoon Mo</au><au>Yuan, Ya-xiang</au><au>Yun, Sangwoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace SQP method for equality constrained optimization</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>74</volume><issue>1</issue><spage>177</spage><epage>194</epage><pages>177-194</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-019-00109-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5782-7266</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-6003 |
ispartof | Computational optimization and applications, 2019-09, Vol.74 (1), p.177-194 |
issn | 0926-6003 1573-2894 |
language | eng |
recordid | cdi_proquest_journals_2226293678 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Constraints Convex and Discrete Geometry Management Science Mathematical models Mathematics Mathematics and Statistics Operations Research Operations Research/Decision Theory Optimization Penalty function Statistics Subspace methods Subspaces |
title | A subspace SQP method for equality constrained optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20SQP%20method%20for%20equality%20constrained%20optimization&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Lee,%20Jae%20Hwa&rft.date=2019-09-01&rft.volume=74&rft.issue=1&rft.spage=177&rft.epage=194&rft.pages=177-194&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-019-00109-6&rft_dat=%3Cproquest_cross%3E2226293678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226293678&rft_id=info:pmid/&rfr_iscdi=true |