A subspace SQP method for equality constrained optimization

In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational optimization and applications 2019-09, Vol.74 (1), p.177-194
Hauptverfasser: Lee, Jae Hwa, Jung, Yoon Mo, Yuan, Ya-xiang, Yun, Sangwoon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 194
container_issue 1
container_start_page 177
container_title Computational optimization and applications
container_volume 74
creator Lee, Jae Hwa
Jung, Yoon Mo
Yuan, Ya-xiang
Yun, Sangwoon
description In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.
doi_str_mv 10.1007/s10589-019-00109-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226293678</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226293678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpE0TXA2DXzCgoq7Da5Jqh5mmk7SL8ddbreDOxeNu7rkPDiHnDC4ZQHmVGBRKU2DjAQNN5QGZsaIUlCudH5IZaC6pBBDH5CSlNQDoUvAZuV5kaahSh9ZnL89P2db3H8FldYiZ3w24afp9ZkOb-ohN610Wur7ZNp_YN6E9JUc1bpI_-805ebu9eV3e09Xj3cNysaJWMN1TBM6xrnJX2Vqi8M773DpZO40cVSEYWudqLGWhlKpYpZVCXuii9DJHZ1HMycW028WwG3zqzToMsR1fGs655FrIUo0tPrVsDClFX5suNluMe8PAfEsykyQzSjI_kowcITFBaSy37z7-Tf9DfQGlN2sD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226293678</pqid></control><display><type>article</type><title>A subspace SQP method for equality constrained optimization</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</creator><creatorcontrib>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</creatorcontrib><description>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</description><identifier>ISSN: 0926-6003</identifier><identifier>EISSN: 1573-2894</identifier><identifier>DOI: 10.1007/s10589-019-00109-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Constraints ; Convex and Discrete Geometry ; Management Science ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Operations Research ; Operations Research/Decision Theory ; Optimization ; Penalty function ; Statistics ; Subspace methods ; Subspaces</subject><ispartof>Computational optimization and applications, 2019-09, Vol.74 (1), p.177-194</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Computational Optimization and Applications is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</citedby><cites>FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</cites><orcidid>0000-0002-5782-7266</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10589-019-00109-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10589-019-00109-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Yuan, Ya-xiang</creatorcontrib><creatorcontrib>Yun, Sangwoon</creatorcontrib><title>A subspace SQP method for equality constrained optimization</title><title>Computational optimization and applications</title><addtitle>Comput Optim Appl</addtitle><description>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</description><subject>Constraints</subject><subject>Convex and Discrete Geometry</subject><subject>Management Science</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Penalty function</subject><subject>Statistics</subject><subject>Subspace methods</subject><subject>Subspaces</subject><issn>0926-6003</issn><issn>1573-2894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpE0TXA2DXzCgoq7Da5Jqh5mmk7SL8ddbreDOxeNu7rkPDiHnDC4ZQHmVGBRKU2DjAQNN5QGZsaIUlCudH5IZaC6pBBDH5CSlNQDoUvAZuV5kaahSh9ZnL89P2db3H8FldYiZ3w24afp9ZkOb-ohN610Wur7ZNp_YN6E9JUc1bpI_-805ebu9eV3e09Xj3cNysaJWMN1TBM6xrnJX2Vqi8M773DpZO40cVSEYWudqLGWhlKpYpZVCXuii9DJHZ1HMycW028WwG3zqzToMsR1fGs655FrIUo0tPrVsDClFX5suNluMe8PAfEsykyQzSjI_kowcITFBaSy37z7-Tf9DfQGlN2sD</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Lee, Jae Hwa</creator><creator>Jung, Yoon Mo</creator><creator>Yuan, Ya-xiang</creator><creator>Yun, Sangwoon</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-5782-7266</orcidid></search><sort><creationdate>20190901</creationdate><title>A subspace SQP method for equality constrained optimization</title><author>Lee, Jae Hwa ; Jung, Yoon Mo ; Yuan, Ya-xiang ; Yun, Sangwoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a022afb4dbcf6a3edee4cd6fd9a2a8531acddfa765888b1b988a25957e64adca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Constraints</topic><topic>Convex and Discrete Geometry</topic><topic>Management Science</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Penalty function</topic><topic>Statistics</topic><topic>Subspace methods</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae Hwa</creatorcontrib><creatorcontrib>Jung, Yoon Mo</creatorcontrib><creatorcontrib>Yuan, Ya-xiang</creatorcontrib><creatorcontrib>Yun, Sangwoon</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational optimization and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae Hwa</au><au>Jung, Yoon Mo</au><au>Yuan, Ya-xiang</au><au>Yun, Sangwoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace SQP method for equality constrained optimization</atitle><jtitle>Computational optimization and applications</jtitle><stitle>Comput Optim Appl</stitle><date>2019-09-01</date><risdate>2019</risdate><volume>74</volume><issue>1</issue><spage>177</spage><epage>194</epage><pages>177-194</pages><issn>0926-6003</issn><eissn>1573-2894</eissn><abstract>In this paper, we present a subspace method for solving large scale nonlinear equality constrained optimization problems. The proposed method is based on a SQP method combined with the limited-memory BFGS update formula. Each subproblem is solved in a theoretically suitable subspace. In the case of few constraints, we show that our search direction in the subspace is equivalent to that of the SQP subproblem in the full space. In the case of many constraints, we reduce the number of constraints in the subproblem and we show that the solution of the subspace subproblem is a descent direction of a particular exact penalty function. Global convergence properties of the proposed method are given for both cases. Numerical results are given to illustrate the soundness of the proposed model.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10589-019-00109-6</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-5782-7266</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational optimization and applications, 2019-09, Vol.74 (1), p.177-194
issn 0926-6003
1573-2894
language eng
recordid cdi_proquest_journals_2226293678
source Business Source Complete; SpringerLink Journals - AutoHoldings
subjects Constraints
Convex and Discrete Geometry
Management Science
Mathematical models
Mathematics
Mathematics and Statistics
Operations Research
Operations Research/Decision Theory
Optimization
Penalty function
Statistics
Subspace methods
Subspaces
title A subspace SQP method for equality constrained optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A58%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20SQP%20method%20for%20equality%20constrained%20optimization&rft.jtitle=Computational%20optimization%20and%20applications&rft.au=Lee,%20Jae%20Hwa&rft.date=2019-09-01&rft.volume=74&rft.issue=1&rft.spage=177&rft.epage=194&rft.pages=177-194&rft.issn=0926-6003&rft.eissn=1573-2894&rft_id=info:doi/10.1007/s10589-019-00109-6&rft_dat=%3Cproquest_cross%3E2226293678%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226293678&rft_id=info:pmid/&rfr_iscdi=true