Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys
Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ + δ boundary temperature ( T γ/γ+δ ) and γ + δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographi...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3485 |
---|---|
container_issue | 8 |
container_start_page | 3478 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 50 |
creator | Wang, Gaixia Peng, Huabei Xiang, Linglin Feng, Jungang Wen, Yuhua |
description | Three methods,
i.e.,
optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure
γ
/
γ
+
δ
boundary temperature (
T
γ/γ+δ
) and
γ
+
δ
/
δ
boundary temperature (
T
γ+δ/δ
) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression:
T
γ/γ+δ
(°C) = 1762.83 + 18.46Mn − 0.38Mn
2
− 250.30Si + 19.71Si
2
+ 28.66Cr − 3.20Cr
2
− 6.50Ni + 1.69Ni
2
+ 289.44C;
T
γ+δ/δ
(°C) = 2758.13 − 6.24Mn + 0.22Mn
2
− 387.82Si + 32.60Si
2
− 59.50Cr + 2.25Cr
2
+ 16.75Ni − 1.61Ni
2
+ 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing
δ
→
γ
phase transformation. |
doi_str_mv | 10.1007/s11661-019-05280-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226265507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226265507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYi-gKsmLk21P3TKLAnBnwSUCK6bzswtDBmm0EIMO7c-jz4HD-GTWB0Tdy5u7l2cc-7Jh9A5o1eMUnUdGEsSRihLCZW8S4k4QC0mO4KwtEMP402VIDLh4hidhLCgNEpF0kLVeA61W8ap3KzMTYUH663ZlK4O2DqPxx6KMt-U9Qzv3z9f3y7j7D_w9MWR8dwEwE8wi2LsLL4BMqrJpCR9Tx5KPJmbFeARLJ3f4V5VuV04RUfWVAHOfncbPd8Mpv07Mny8ve_3hiTnIlaGTHZpCgXLlY31TWpzbk2R2UJJBkpJowqhIDNpRzGVKpnSwjIBlHYYZBmINrpoclferbcQNnrhtr6OLzXnPOGJlBFHG_FGlXsXggerV75cGr_TjOpvqrqhqiMq_UNVi2gSjSlEcT0D_xf9j-sLnP59Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226265507</pqid></control><display><type>article</type><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</creator><creatorcontrib>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</creatorcontrib><description>Three methods,
i.e.,
optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure
γ
/
γ
+
δ
boundary temperature (
T
γ/γ+δ
) and
γ
+
δ
/
δ
boundary temperature (
T
γ+δ/δ
) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression:
T
γ/γ+δ
(°C) = 1762.83 + 18.46Mn − 0.38Mn
2
− 250.30Si + 19.71Si
2
+ 28.66Cr − 3.20Cr
2
− 6.50Ni + 1.69Ni
2
+ 289.44C;
T
γ+δ/δ
(°C) = 2758.13 − 6.24Mn + 0.22Mn
2
− 387.82Si + 32.60Si
2
− 59.50Cr + 2.25Cr
2
+ 16.75Ni − 1.61Ni
2
+ 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing
δ
→
γ
phase transformation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05280-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium base alloys ; Differential scanning calorimetry ; Gamma phase ; Iron ; Manganese ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Metallic Materials ; Nanotechnology ; Nickel ; Optical memory (data storage) ; Organic chemistry ; Phase transitions ; Qualitative research ; Shape memory alloys ; Silicon base alloys ; Structural Materials ; Surfaces and Interfaces ; Thermal expansion ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</citedby><cites>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05280-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05280-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Gaixia</creatorcontrib><creatorcontrib>Peng, Huabei</creatorcontrib><creatorcontrib>Xiang, Linglin</creatorcontrib><creatorcontrib>Feng, Jungang</creatorcontrib><creatorcontrib>Wen, Yuhua</creatorcontrib><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Three methods,
i.e.,
optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure
γ
/
γ
+
δ
boundary temperature (
T
γ/γ+δ
) and
γ
+
δ
/
δ
boundary temperature (
T
γ+δ/δ
) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression:
T
γ/γ+δ
(°C) = 1762.83 + 18.46Mn − 0.38Mn
2
− 250.30Si + 19.71Si
2
+ 28.66Cr − 3.20Cr
2
− 6.50Ni + 1.69Ni
2
+ 289.44C;
T
γ+δ/δ
(°C) = 2758.13 − 6.24Mn + 0.22Mn
2
− 387.82Si + 32.60Si
2
− 59.50Cr + 2.25Cr
2
+ 16.75Ni − 1.61Ni
2
+ 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing
δ
→
γ
phase transformation.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium base alloys</subject><subject>Differential scanning calorimetry</subject><subject>Gamma phase</subject><subject>Iron</subject><subject>Manganese</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Optical memory (data storage)</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>Qualitative research</subject><subject>Shape memory alloys</subject><subject>Silicon base alloys</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal expansion</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OAjEUhRujiYi-gKsmLk21P3TKLAnBnwSUCK6bzswtDBmm0EIMO7c-jz4HD-GTWB0Tdy5u7l2cc-7Jh9A5o1eMUnUdGEsSRihLCZW8S4k4QC0mO4KwtEMP402VIDLh4hidhLCgNEpF0kLVeA61W8ap3KzMTYUH663ZlK4O2DqPxx6KMt-U9Qzv3z9f3y7j7D_w9MWR8dwEwE8wi2LsLL4BMqrJpCR9Tx5KPJmbFeARLJ3f4V5VuV04RUfWVAHOfncbPd8Mpv07Mny8ve_3hiTnIlaGTHZpCgXLlY31TWpzbk2R2UJJBkpJowqhIDNpRzGVKpnSwjIBlHYYZBmINrpoclferbcQNnrhtr6OLzXnPOGJlBFHG_FGlXsXggerV75cGr_TjOpvqrqhqiMq_UNVi2gSjSlEcT0D_xf9j-sLnP59Iw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Wang, Gaixia</creator><creator>Peng, Huabei</creator><creator>Xiang, Linglin</creator><creator>Feng, Jungang</creator><creator>Wen, Yuhua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190815</creationdate><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><author>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium base alloys</topic><topic>Differential scanning calorimetry</topic><topic>Gamma phase</topic><topic>Iron</topic><topic>Manganese</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Optical memory (data storage)</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>Qualitative research</topic><topic>Shape memory alloys</topic><topic>Silicon base alloys</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal expansion</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gaixia</creatorcontrib><creatorcontrib>Peng, Huabei</creatorcontrib><creatorcontrib>Xiang, Linglin</creatorcontrib><creatorcontrib>Feng, Jungang</creatorcontrib><creatorcontrib>Wen, Yuhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gaixia</au><au>Peng, Huabei</au><au>Xiang, Linglin</au><au>Feng, Jungang</au><au>Wen, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>50</volume><issue>8</issue><spage>3478</spage><epage>3485</epage><pages>3478-3485</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Three methods,
i.e.,
optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure
γ
/
γ
+
δ
boundary temperature (
T
γ/γ+δ
) and
γ
+
δ
/
δ
boundary temperature (
T
γ+δ/δ
) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the
T
γ/γ+δ
and
T
γ+δ/δ
temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression:
T
γ/γ+δ
(°C) = 1762.83 + 18.46Mn − 0.38Mn
2
− 250.30Si + 19.71Si
2
+ 28.66Cr − 3.20Cr
2
− 6.50Ni + 1.69Ni
2
+ 289.44C;
T
γ+δ/δ
(°C) = 2758.13 − 6.24Mn + 0.22Mn
2
− 387.82Si + 32.60Si
2
− 59.50Cr + 2.25Cr
2
+ 16.75Ni − 1.61Ni
2
+ 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing
δ
→
γ
phase transformation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05280-3</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2226265507 |
source | SpringerLink Journals - AutoHoldings |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Chromium base alloys Differential scanning calorimetry Gamma phase Iron Manganese Martensitic transformations Materials Science Mathematical analysis Metallic Materials Nanotechnology Nickel Optical memory (data storage) Organic chemistry Phase transitions Qualitative research Shape memory alloys Silicon base alloys Structural Materials Surfaces and Interfaces Thermal expansion Thin Films |
title | Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenomenological%20Equations%20for%20Predicting%20%CE%B3%E2%80%89+%E2%80%89%CE%B4%20Two-Phase%20Region%20of%20Fe-Mn-Si-Cr-Ni%20Shape%20Memory%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Wang,%20Gaixia&rft.date=2019-08-15&rft.volume=50&rft.issue=8&rft.spage=3478&rft.epage=3485&rft.pages=3478-3485&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05280-3&rft_dat=%3Cproquest_cross%3E2226265507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226265507&rft_id=info:pmid/&rfr_iscdi=true |