Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ  +  δ boundary temperature ( T γ/γ+δ ) and γ  +  δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485
Hauptverfasser: Wang, Gaixia, Peng, Huabei, Xiang, Linglin, Feng, Jungang, Wen, Yuhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3485
container_issue 8
container_start_page 3478
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 50
creator Wang, Gaixia
Peng, Huabei
Xiang, Linglin
Feng, Jungang
Wen, Yuhua
description Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ  +  δ boundary temperature ( T γ/γ+δ ) and γ  +  δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the T γ/γ+δ and T γ+δ/δ temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the T γ/γ+δ and T γ+δ/δ temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression: T γ/γ+δ (°C) = 1762.83 + 18.46Mn − 0.38Mn 2  − 250.30Si + 19.71Si 2  + 28.66Cr − 3.20Cr 2  − 6.50Ni + 1.69Ni 2  + 289.44C; T γ+δ/δ (°C) = 2758.13 − 6.24Mn + 0.22Mn 2  − 387.82Si + 32.60Si 2  − 59.50Cr + 2.25Cr 2  + 16.75Ni − 1.61Ni 2  + 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing δ  →  γ phase transformation.
doi_str_mv 10.1007/s11661-019-05280-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2226265507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2226265507</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhRujiYi-gKsmLk21P3TKLAnBnwSUCK6bzswtDBmm0EIMO7c-jz4HD-GTWB0Tdy5u7l2cc-7Jh9A5o1eMUnUdGEsSRihLCZW8S4k4QC0mO4KwtEMP402VIDLh4hidhLCgNEpF0kLVeA61W8ap3KzMTYUH663ZlK4O2DqPxx6KMt-U9Qzv3z9f3y7j7D_w9MWR8dwEwE8wi2LsLL4BMqrJpCR9Tx5KPJmbFeARLJ3f4V5VuV04RUfWVAHOfncbPd8Mpv07Mny8ve_3hiTnIlaGTHZpCgXLlY31TWpzbk2R2UJJBkpJowqhIDNpRzGVKpnSwjIBlHYYZBmINrpoclferbcQNnrhtr6OLzXnPOGJlBFHG_FGlXsXggerV75cGr_TjOpvqrqhqiMq_UNVi2gSjSlEcT0D_xf9j-sLnP59Iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226265507</pqid></control><display><type>article</type><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</creator><creatorcontrib>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</creatorcontrib><description>Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ  +  δ boundary temperature ( T γ/γ+δ ) and γ  +  δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the T γ/γ+δ and T γ+δ/δ temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the T γ/γ+δ and T γ+δ/δ temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression: T γ/γ+δ (°C) = 1762.83 + 18.46Mn − 0.38Mn 2  − 250.30Si + 19.71Si 2  + 28.66Cr − 3.20Cr 2  − 6.50Ni + 1.69Ni 2  + 289.44C; T γ+δ/δ (°C) = 2758.13 − 6.24Mn + 0.22Mn 2  − 387.82Si + 32.60Si 2  − 59.50Cr + 2.25Cr 2  + 16.75Ni − 1.61Ni 2  + 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing δ  →  γ phase transformation.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-019-05280-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Chromium base alloys ; Differential scanning calorimetry ; Gamma phase ; Iron ; Manganese ; Martensitic transformations ; Materials Science ; Mathematical analysis ; Metallic Materials ; Nanotechnology ; Nickel ; Optical memory (data storage) ; Organic chemistry ; Phase transitions ; Qualitative research ; Shape memory alloys ; Silicon base alloys ; Structural Materials ; Surfaces and Interfaces ; Thermal expansion ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2019</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2019). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</citedby><cites>FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-019-05280-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-019-05280-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wang, Gaixia</creatorcontrib><creatorcontrib>Peng, Huabei</creatorcontrib><creatorcontrib>Xiang, Linglin</creatorcontrib><creatorcontrib>Feng, Jungang</creatorcontrib><creatorcontrib>Wen, Yuhua</creatorcontrib><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ  +  δ boundary temperature ( T γ/γ+δ ) and γ  +  δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the T γ/γ+δ and T γ+δ/δ temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the T γ/γ+δ and T γ+δ/δ temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression: T γ/γ+δ (°C) = 1762.83 + 18.46Mn − 0.38Mn 2  − 250.30Si + 19.71Si 2  + 28.66Cr − 3.20Cr 2  − 6.50Ni + 1.69Ni 2  + 289.44C; T γ+δ/δ (°C) = 2758.13 − 6.24Mn + 0.22Mn 2  − 387.82Si + 32.60Si 2  − 59.50Cr + 2.25Cr 2  + 16.75Ni − 1.61Ni 2  + 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing δ  →  γ phase transformation.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Chromium base alloys</subject><subject>Differential scanning calorimetry</subject><subject>Gamma phase</subject><subject>Iron</subject><subject>Manganese</subject><subject>Martensitic transformations</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Metallic Materials</subject><subject>Nanotechnology</subject><subject>Nickel</subject><subject>Optical memory (data storage)</subject><subject>Organic chemistry</subject><subject>Phase transitions</subject><subject>Qualitative research</subject><subject>Shape memory alloys</subject><subject>Silicon base alloys</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thermal expansion</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kM1OAjEUhRujiYi-gKsmLk21P3TKLAnBnwSUCK6bzswtDBmm0EIMO7c-jz4HD-GTWB0Tdy5u7l2cc-7Jh9A5o1eMUnUdGEsSRihLCZW8S4k4QC0mO4KwtEMP402VIDLh4hidhLCgNEpF0kLVeA61W8ap3KzMTYUH663ZlK4O2DqPxx6KMt-U9Qzv3z9f3y7j7D_w9MWR8dwEwE8wi2LsLL4BMqrJpCR9Tx5KPJmbFeARLJ3f4V5VuV04RUfWVAHOfncbPd8Mpv07Mny8ve_3hiTnIlaGTHZpCgXLlY31TWpzbk2R2UJJBkpJowqhIDNpRzGVKpnSwjIBlHYYZBmINrpoclferbcQNnrhtr6OLzXnPOGJlBFHG_FGlXsXggerV75cGr_TjOpvqrqhqiMq_UNVi2gSjSlEcT0D_xf9j-sLnP59Iw</recordid><startdate>20190815</startdate><enddate>20190815</enddate><creator>Wang, Gaixia</creator><creator>Peng, Huabei</creator><creator>Xiang, Linglin</creator><creator>Feng, Jungang</creator><creator>Wen, Yuhua</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190815</creationdate><title>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</title><author>Wang, Gaixia ; Peng, Huabei ; Xiang, Linglin ; Feng, Jungang ; Wen, Yuhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2343-eb5809ed1c7f194a9fc2fadbfd751e775a7d37eba9471797590df13e0041ebbe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Chromium base alloys</topic><topic>Differential scanning calorimetry</topic><topic>Gamma phase</topic><topic>Iron</topic><topic>Manganese</topic><topic>Martensitic transformations</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Metallic Materials</topic><topic>Nanotechnology</topic><topic>Nickel</topic><topic>Optical memory (data storage)</topic><topic>Organic chemistry</topic><topic>Phase transitions</topic><topic>Qualitative research</topic><topic>Shape memory alloys</topic><topic>Silicon base alloys</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thermal expansion</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gaixia</creatorcontrib><creatorcontrib>Peng, Huabei</creatorcontrib><creatorcontrib>Xiang, Linglin</creatorcontrib><creatorcontrib>Feng, Jungang</creatorcontrib><creatorcontrib>Wen, Yuhua</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gaixia</au><au>Peng, Huabei</au><au>Xiang, Linglin</au><au>Feng, Jungang</au><au>Wen, Yuhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2019-08-15</date><risdate>2019</risdate><volume>50</volume><issue>8</issue><spage>3478</spage><epage>3485</epage><pages>3478-3485</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>Three methods, i.e., optical metallographic method, differential scanning calorimeter (DSC), and thermal expansion, were evaluated to measure γ / γ  +  δ boundary temperature ( T γ/γ+δ ) and γ  +  δ / δ boundary temperature ( T γ+δ/δ ) of Fe-Mn-Si-based shape memory alloys. The optical metallographic method is most suitable and selected to determine the T γ/γ+δ and T γ+δ/δ temperatures of Fe-(14 to 25)Mn-(4.0 to 6.5)Si-(7 to 12)Cr-(2.0 to 8.5)Ni-(0.006 to 0.140)C alloys. Based on the above experimental data, the following phenomenological equations for predicting the T γ/γ+δ and T γ+δ/δ temperatures of Fe-Mn-Si-Cr-Ni-C shape memory alloys were established by nonlinear regression: T γ/γ+δ (°C) = 1762.83 + 18.46Mn − 0.38Mn 2  − 250.30Si + 19.71Si 2  + 28.66Cr − 3.20Cr 2  − 6.50Ni + 1.69Ni 2  + 289.44C; T γ+δ/δ (°C) = 2758.13 − 6.24Mn + 0.22Mn 2  − 387.82Si + 32.60Si 2  − 59.50Cr + 2.25Cr 2  + 16.75Ni − 1.61Ni 2  + 345.84C; chemical symbols represent weight percent of Mn, Si, Cr, Ni, and C elements. The two phenomenological equations provide a basis of composition design for the fabrication of training-free processed Fe-Mn-Si-based alloys utilizing δ  →  γ phase transformation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-019-05280-3</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2019-08, Vol.50 (8), p.3478-3485
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2226265507
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Chromium base alloys
Differential scanning calorimetry
Gamma phase
Iron
Manganese
Martensitic transformations
Materials Science
Mathematical analysis
Metallic Materials
Nanotechnology
Nickel
Optical memory (data storage)
Organic chemistry
Phase transitions
Qualitative research
Shape memory alloys
Silicon base alloys
Structural Materials
Surfaces and Interfaces
Thermal expansion
Thin Films
title Phenomenological Equations for Predicting γ + δ Two-Phase Region of Fe-Mn-Si-Cr-Ni Shape Memory Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phenomenological%20Equations%20for%20Predicting%20%CE%B3%E2%80%89+%E2%80%89%CE%B4%20Two-Phase%20Region%20of%20Fe-Mn-Si-Cr-Ni%20Shape%20Memory%20Alloys&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Wang,%20Gaixia&rft.date=2019-08-15&rft.volume=50&rft.issue=8&rft.spage=3478&rft.epage=3485&rft.pages=3478-3485&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-019-05280-3&rft_dat=%3Cproquest_cross%3E2226265507%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226265507&rft_id=info:pmid/&rfr_iscdi=true