Online Change-Point Detection in Sparse Time Series With Application to Online Advertising

Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Systems man, and cybernetics. Systems, 2019-06, Vol.49 (6), p.1141-1151
Hauptverfasser: Zhang, Jie, Wei, Zhi, Yan, Zhenyu, Zhou, MengChu, Pani, Abhishek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1151
container_issue 6
container_start_page 1141
container_title IEEE transactions on systems, man, and cybernetics. Systems
container_volume 49
creator Zhang, Jie
Wei, Zhi
Yan, Zhenyu
Zhou, MengChu
Pani, Abhishek
description Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting change-points in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.
doi_str_mv 10.1109/TSMC.2017.2738151
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2226185795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8063392</ieee_id><sourcerecordid>2226185795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-1ddeaa5490c4b6a53c8613358071468fed3ef82387718d0d4e66b49a2bd70ca13</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOOZ-gPgS8LkzN2nT9HFUncJkwiaCLyFrb7eMLa1JJvjv3dzY0z0P3zkXPkJugQ0BWPEwn72VQ84gH_JcKMjggvQ4SJVwLvjlOYO8JoMQ1owx4EoKJnvka-o21iEtV8YtMXlvrYv0ESNW0baOWkdnnfEB6dxukc7QWwz008YVHXXdxlbmH4stPe2M6h_00QbrljfkqjGbgIPT7ZOP56d5-ZJMpuPXcjRJKiFFTKCu0ZgsLViVLqTJRKUkCJEplkMqVYO1wEZxofIcVM3qFKVcpIXhizpnlQHRJ_fH3c633zsMUa_bnXf7l5pzLkFleZHtKThSlW9D8Njoztut8b8amD5Y1AeL-mBRnyzuO3fHjkXEM6-YFKLg4g804Wz9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226185795</pqid></control><display><type>article</type><title>Online Change-Point Detection in Sparse Time Series With Application to Online Advertising</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Jie ; Wei, Zhi ; Yan, Zhenyu ; Zhou, MengChu ; Pani, Abhishek</creator><creatorcontrib>Zhang, Jie ; Wei, Zhi ; Yan, Zhenyu ; Zhou, MengChu ; Pani, Abhishek</creatorcontrib><description>Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting change-points in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.</description><identifier>ISSN: 2168-2216</identifier><identifier>EISSN: 2168-2232</identifier><identifier>DOI: 10.1109/TSMC.2017.2738151</identifier><identifier>CODEN: ITSMFE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advertising ; Change detection ; Computer simulation ; Data models ; Mathematical models ; Media ; Model accuracy ; Noise measurement ; Online advertising ; online change-point detection ; Performance prediction ; Predictive models ; Return on investment ; sparse time series (TS) ; Time series ; Time series analysis</subject><ispartof>IEEE transactions on systems, man, and cybernetics. Systems, 2019-06, Vol.49 (6), p.1141-1151</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-1ddeaa5490c4b6a53c8613358071468fed3ef82387718d0d4e66b49a2bd70ca13</citedby><cites>FETCH-LOGICAL-c363t-1ddeaa5490c4b6a53c8613358071468fed3ef82387718d0d4e66b49a2bd70ca13</cites><orcidid>0000-0001-6059-4267 ; 0000-0002-5408-8752 ; 0000-0003-0242-8812</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8063392$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8063392$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Yan, Zhenyu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Pani, Abhishek</creatorcontrib><title>Online Change-Point Detection in Sparse Time Series With Application to Online Advertising</title><title>IEEE transactions on systems, man, and cybernetics. Systems</title><addtitle>TSMC</addtitle><description>Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting change-points in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.</description><subject>Advertising</subject><subject>Change detection</subject><subject>Computer simulation</subject><subject>Data models</subject><subject>Mathematical models</subject><subject>Media</subject><subject>Model accuracy</subject><subject>Noise measurement</subject><subject>Online advertising</subject><subject>online change-point detection</subject><subject>Performance prediction</subject><subject>Predictive models</subject><subject>Return on investment</subject><subject>sparse time series (TS)</subject><subject>Time series</subject><subject>Time series analysis</subject><issn>2168-2216</issn><issn>2168-2232</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFLwzAUhYMoOOZ-gPgS8LkzN2nT9HFUncJkwiaCLyFrb7eMLa1JJvjv3dzY0z0P3zkXPkJugQ0BWPEwn72VQ84gH_JcKMjggvQ4SJVwLvjlOYO8JoMQ1owx4EoKJnvka-o21iEtV8YtMXlvrYv0ESNW0baOWkdnnfEB6dxukc7QWwz008YVHXXdxlbmH4stPe2M6h_00QbrljfkqjGbgIPT7ZOP56d5-ZJMpuPXcjRJKiFFTKCu0ZgsLViVLqTJRKUkCJEplkMqVYO1wEZxofIcVM3qFKVcpIXhizpnlQHRJ_fH3c633zsMUa_bnXf7l5pzLkFleZHtKThSlW9D8Njoztut8b8amD5Y1AeL-mBRnyzuO3fHjkXEM6-YFKLg4g804Wz9</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Zhang, Jie</creator><creator>Wei, Zhi</creator><creator>Yan, Zhenyu</creator><creator>Zhou, MengChu</creator><creator>Pani, Abhishek</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6059-4267</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0003-0242-8812</orcidid></search><sort><creationdate>20190601</creationdate><title>Online Change-Point Detection in Sparse Time Series With Application to Online Advertising</title><author>Zhang, Jie ; Wei, Zhi ; Yan, Zhenyu ; Zhou, MengChu ; Pani, Abhishek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-1ddeaa5490c4b6a53c8613358071468fed3ef82387718d0d4e66b49a2bd70ca13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Advertising</topic><topic>Change detection</topic><topic>Computer simulation</topic><topic>Data models</topic><topic>Mathematical models</topic><topic>Media</topic><topic>Model accuracy</topic><topic>Noise measurement</topic><topic>Online advertising</topic><topic>online change-point detection</topic><topic>Performance prediction</topic><topic>Predictive models</topic><topic>Return on investment</topic><topic>sparse time series (TS)</topic><topic>Time series</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Wei, Zhi</creatorcontrib><creatorcontrib>Yan, Zhenyu</creatorcontrib><creatorcontrib>Zhou, MengChu</creatorcontrib><creatorcontrib>Pani, Abhishek</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jie</au><au>Wei, Zhi</au><au>Yan, Zhenyu</au><au>Zhou, MengChu</au><au>Pani, Abhishek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online Change-Point Detection in Sparse Time Series With Application to Online Advertising</atitle><jtitle>IEEE transactions on systems, man, and cybernetics. Systems</jtitle><stitle>TSMC</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>49</volume><issue>6</issue><spage>1141</spage><epage>1151</epage><pages>1141-1151</pages><issn>2168-2216</issn><eissn>2168-2232</eissn><coden>ITSMFE</coden><abstract>Online advertising delivers promotional marketing messages to consumers through online media. Advertisers often have the desire to optimize their advertising spending strategies in order to gain the highest return on investment and maximize their key performance indicator. To build accurate advertisement performance predictive models, it is crucial to detect the change-points in the historical data and apply appropriate strategies to address a data pattern shift problem. However, with sparse data, which is common in online advertising and some other applications, online change-point detection is very challenging. We present a novel collaborated online change-point detection method in this paper. Through efficiently leveraging and coordinating with auxiliary time series, we can quickly and accurately identify the change-points in sparse and noisy time series. Simulation studies as well as real data experiments have justified the proposed method's effectiveness in detecting change-points in sparse time series. Therefore, it can be used to improve the accuracy of predictive models.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSMC.2017.2738151</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6059-4267</orcidid><orcidid>https://orcid.org/0000-0002-5408-8752</orcidid><orcidid>https://orcid.org/0000-0003-0242-8812</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2216
ispartof IEEE transactions on systems, man, and cybernetics. Systems, 2019-06, Vol.49 (6), p.1141-1151
issn 2168-2216
2168-2232
language eng
recordid cdi_proquest_journals_2226185795
source IEEE Electronic Library (IEL)
subjects Advertising
Change detection
Computer simulation
Data models
Mathematical models
Media
Model accuracy
Noise measurement
Online advertising
online change-point detection
Performance prediction
Predictive models
Return on investment
sparse time series (TS)
Time series
Time series analysis
title Online Change-Point Detection in Sparse Time Series With Application to Online Advertising
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A31%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20Change-Point%20Detection%20in%20Sparse%20Time%20Series%20With%20Application%20to%20Online%20Advertising&rft.jtitle=IEEE%20transactions%20on%20systems,%20man,%20and%20cybernetics.%20Systems&rft.au=Zhang,%20Jie&rft.date=2019-06-01&rft.volume=49&rft.issue=6&rft.spage=1141&rft.epage=1151&rft.pages=1141-1151&rft.issn=2168-2216&rft.eissn=2168-2232&rft.coden=ITSMFE&rft_id=info:doi/10.1109/TSMC.2017.2738151&rft_dat=%3Cproquest_RIE%3E2226185795%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226185795&rft_id=info:pmid/&rft_ieee_id=8063392&rfr_iscdi=true