Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius
We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix produc...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2019-05, Vol.80 (5), p.791-812 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 812 |
---|---|
container_issue | 5 |
container_start_page | 791 |
container_title | Automation and remote control |
container_volume | 80 |
creator | Kozyakin, V. S. Kuznetsov, N. A. Chebotarev, P. Yu |
description | We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1]. |
doi_str_mv | 10.1134/S0005117919050011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225943785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225943785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9dTcvCazLMVHpUW0uh6m06Sd0iY1N7Pov3eGCi7E1eFyvnMuHEJugY0AhLxfMMYUQF5AwRRjAGdkAJqZTDDBz8mgt7PevyRXiNueYFwMyNskeLQeW6SNp2M8-noTgw_dPW93qanW1ie6OGKyexzR6XRE5zZtwooGR19C05sHW6dY7eh7tWpavCYXrtqhvfnRIfl8fPiYPGez16fpZDzLagE6ZVoXQihncg3GrJbGcGYUZ1xyY1QhKplzx4S2S-FAdyoLsM5K7iToGqQRQ3J36j3E8NVaTOU2tNF3L0vOuSqkyI3qKDhRdQyI0bryEJt9FY8lsLJfrvyzXJfhpwx2rF_b-Nv8f-gbEQRsxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225943785</pqid></control><display><type>article</type><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</creator><creatorcontrib>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</creatorcontrib><description>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117919050011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Discrete time systems ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Mechanical Engineering ; Mechatronics ; Multiagent systems ; Reviews ; Robotics ; Stability analysis ; Systems Theory</subject><ispartof>Automation and remote control, 2019-05, Vol.80 (5), p.791-812</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</citedby><cites>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117919050011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117919050011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kozyakin, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Discrete time systems</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Reviews</subject><subject>Robotics</subject><subject>Stability analysis</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9dTcvCazLMVHpUW0uh6m06Sd0iY1N7Pov3eGCi7E1eFyvnMuHEJugY0AhLxfMMYUQF5AwRRjAGdkAJqZTDDBz8mgt7PevyRXiNueYFwMyNskeLQeW6SNp2M8-noTgw_dPW93qanW1ie6OGKyexzR6XRE5zZtwooGR19C05sHW6dY7eh7tWpavCYXrtqhvfnRIfl8fPiYPGez16fpZDzLagE6ZVoXQihncg3GrJbGcGYUZ1xyY1QhKplzx4S2S-FAdyoLsM5K7iToGqQRQ3J36j3E8NVaTOU2tNF3L0vOuSqkyI3qKDhRdQyI0bryEJt9FY8lsLJfrvyzXJfhpwx2rF_b-Nv8f-gbEQRsxw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kozyakin, V. S.</creator><creator>Kuznetsov, N. A.</creator><creator>Chebotarev, P. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><author>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Discrete time systems</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Reviews</topic><topic>Robotics</topic><topic>Stability analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozyakin, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozyakin, V. S.</au><au>Kuznetsov, N. A.</au><au>Chebotarev, P. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>80</volume><issue>5</issue><spage>791</spage><epage>812</epage><pages>791-812</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117919050011</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2019-05, Vol.80 (5), p.791-812 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_2225943785 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Discrete time systems Linear systems Mathematical analysis Mathematics Mathematics and Statistics Matrix methods Mechanical Engineering Mechatronics Multiagent systems Reviews Robotics Stability analysis Systems Theory |
title | Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20in%20Asynchronous%20Multiagent%20Systems.%20II.%20Method%20of%20Joint%20Spectral%20Radius&rft.jtitle=Automation%20and%20remote%20control&rft.au=Kozyakin,%20V.%20S.&rft.date=2019-05-01&rft.volume=80&rft.issue=5&rft.spage=791&rft.epage=812&rft.pages=791-812&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117919050011&rft_dat=%3Cproquest_cross%3E2225943785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225943785&rft_id=info:pmid/&rfr_iscdi=true |