Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius

We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2019-05, Vol.80 (5), p.791-812
Hauptverfasser: Kozyakin, V. S., Kuznetsov, N. A., Chebotarev, P. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 812
container_issue 5
container_start_page 791
container_title Automation and remote control
container_volume 80
creator Kozyakin, V. S.
Kuznetsov, N. A.
Chebotarev, P. Yu
description We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].
doi_str_mv 10.1134/S0005117919050011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225943785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225943785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9dTcvCazLMVHpUW0uh6m06Sd0iY1N7Pov3eGCi7E1eFyvnMuHEJugY0AhLxfMMYUQF5AwRRjAGdkAJqZTDDBz8mgt7PevyRXiNueYFwMyNskeLQeW6SNp2M8-noTgw_dPW93qanW1ie6OGKyexzR6XRE5zZtwooGR19C05sHW6dY7eh7tWpavCYXrtqhvfnRIfl8fPiYPGez16fpZDzLagE6ZVoXQihncg3GrJbGcGYUZ1xyY1QhKplzx4S2S-FAdyoLsM5K7iToGqQRQ3J36j3E8NVaTOU2tNF3L0vOuSqkyI3qKDhRdQyI0bryEJt9FY8lsLJfrvyzXJfhpwx2rF_b-Nv8f-gbEQRsxw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225943785</pqid></control><display><type>article</type><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</creator><creatorcontrib>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</creatorcontrib><description>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S0005117919050011</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Discrete time systems ; Linear systems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Matrix methods ; Mechanical Engineering ; Mechatronics ; Multiagent systems ; Reviews ; Robotics ; Stability analysis ; Systems Theory</subject><ispartof>Automation and remote control, 2019-05, Vol.80 (5), p.791-812</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</citedby><cites>FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0005117919050011$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0005117919050011$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kozyakin, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Discrete time systems</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrix methods</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Multiagent systems</subject><subject>Reviews</subject><subject>Robotics</subject><subject>Stability analysis</subject><subject>Systems Theory</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9dTcvCazLMVHpUW0uh6m06Sd0iY1N7Pov3eGCi7E1eFyvnMuHEJugY0AhLxfMMYUQF5AwRRjAGdkAJqZTDDBz8mgt7PevyRXiNueYFwMyNskeLQeW6SNp2M8-noTgw_dPW93qanW1ie6OGKyexzR6XRE5zZtwooGR19C05sHW6dY7eh7tWpavCYXrtqhvfnRIfl8fPiYPGez16fpZDzLagE6ZVoXQihncg3GrJbGcGYUZ1xyY1QhKplzx4S2S-FAdyoLsM5K7iToGqQRQ3J36j3E8NVaTOU2tNF3L0vOuSqkyI3qKDhRdQyI0bryEJt9FY8lsLJfrvyzXJfhpwx2rF_b-Nv8f-gbEQRsxw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Kozyakin, V. S.</creator><creator>Kuznetsov, N. A.</creator><creator>Chebotarev, P. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190501</creationdate><title>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</title><author>Kozyakin, V. S. ; Kuznetsov, N. A. ; Chebotarev, P. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-669335f876188db8820852024288593a472f036eb3f1636e491efe42f416c1483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Discrete time systems</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrix methods</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Multiagent systems</topic><topic>Reviews</topic><topic>Robotics</topic><topic>Stability analysis</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozyakin, V. S.</creatorcontrib><creatorcontrib>Kuznetsov, N. A.</creatorcontrib><creatorcontrib>Chebotarev, P. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozyakin, V. S.</au><au>Kuznetsov, N. A.</au><au>Chebotarev, P. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>80</volume><issue>5</issue><spage>791</spage><epage>812</epage><pages>791-812</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We describe mathematical methods for analyzing the stability, stabilizability and consensus of linear multiagent systems with discrete time. These methods are based on the idea of using the notion of joint/generalized spectral radius of matrix sets to analyze the rate of convergence of matrix products with factors from the sets of matrices with special properties. This is a continuation of the survey by the same authors named “Consensus in Asynchronous Multiagent Systems”; the first part was published in [1].</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0005117919050011</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2019-05, Vol.80 (5), p.791-812
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_2225943785
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Discrete time systems
Linear systems
Mathematical analysis
Mathematics
Mathematics and Statistics
Matrix methods
Mechanical Engineering
Mechatronics
Multiagent systems
Reviews
Robotics
Stability analysis
Systems Theory
title Consensus in Asynchronous Multiagent Systems. II. Method of Joint Spectral Radius
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consensus%20in%20Asynchronous%20Multiagent%20Systems.%20II.%20Method%20of%20Joint%20Spectral%20Radius&rft.jtitle=Automation%20and%20remote%20control&rft.au=Kozyakin,%20V.%20S.&rft.date=2019-05-01&rft.volume=80&rft.issue=5&rft.spage=791&rft.epage=812&rft.pages=791-812&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S0005117919050011&rft_dat=%3Cproquest_cross%3E2225943785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225943785&rft_id=info:pmid/&rfr_iscdi=true