Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System

The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE photonics technology letters 2019-06, Vol.31 (11), p.821-824
Hauptverfasser: Rajbhandari, Sujan, Hyunchae Chun, Faulkner, Grahame, Haas, Harald, Enyuan Xie, McKendry, Jonathan J. D., Herrnsdorf, Johannes, Gu, Erdan, Dawson, Martin D., O'Brien, Dominic
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 11
container_start_page 821
container_title IEEE photonics technology letters
container_volume 31
creator Rajbhandari, Sujan
Hyunchae Chun
Faulkner, Grahame
Haas, Harald
Enyuan Xie
McKendry, Jonathan J. D.
Herrnsdorf, Johannes
Gu, Erdan
Dawson, Martin D.
O'Brien, Dominic
description The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.
doi_str_mv 10.1109/LPT.2019.2909139
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2225879532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8681630</ieee_id><sourcerecordid>2225879532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcFrztzkrRNLnVMnXQfsOltSNsEOremS1pk_nozNrw6L5znPQcehO4BjwCweMqX6xHBIEZEYAFUXKABCAYxhoxdhoxDBqDJNbrxfoMxsISyAVrOde_UNprr7se67_hFeV1FH7ZuumjVqq4OO9VU0VrvWnsEJ_tebevfsLFNZKyLZtPZIv7Kx9Hq4Du9u0VXRm29vjvPIfp8nazH73G-eJuOn_O4pJR2cZZqqApqFDOG8YyWRCuOOeGUEk1TQ6DgBigumACTViwtDBNFVoiSlxVXjA7R4-lu6-y-176TG9u7JryUhJCEZyKhJFD4RJXOeu-0ka2rd8odJGB59CaDN3n0Js_eQuXhVKm11v84TzmkFNM_X8doDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225879532</pqid></control><display><type>article</type><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><source>IEEE Electronic Library (IEL)</source><creator>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</creator><creatorcontrib>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</creatorcontrib><description>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2019.2909139</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Communications systems ; Crosstalk ; Decision feedback equalizers ; Decoding ; Equalization ; Equalizers ; joint equalization ; Light emitting diodes ; MIMO (control systems) ; MIMO communication ; multiple input multiple output ; Neural networks ; non-linear transfer function ; Optical communication ; Receivers ; Transfer functions ; Visible light communications ; White light</subject><ispartof>IEEE photonics technology letters, 2019-06, Vol.31 (11), p.821-824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</citedby><cites>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</cites><orcidid>0000-0001-8742-118X ; 0000-0002-3907-4862 ; 0000-0001-9705-2701 ; 0000-0001-7776-8091 ; 0000-0002-3856-5782 ; 0000-0002-6639-2989 ; 0000-0002-6379-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8681630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8681630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajbhandari, Sujan</creatorcontrib><creatorcontrib>Hyunchae Chun</creatorcontrib><creatorcontrib>Faulkner, Grahame</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><creatorcontrib>Enyuan Xie</creatorcontrib><creatorcontrib>McKendry, Jonathan J. D.</creatorcontrib><creatorcontrib>Herrnsdorf, Johannes</creatorcontrib><creatorcontrib>Gu, Erdan</creatorcontrib><creatorcontrib>Dawson, Martin D.</creatorcontrib><creatorcontrib>O'Brien, Dominic</creatorcontrib><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Communications systems</subject><subject>Crosstalk</subject><subject>Decision feedback equalizers</subject><subject>Decoding</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>joint equalization</subject><subject>Light emitting diodes</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>multiple input multiple output</subject><subject>Neural networks</subject><subject>non-linear transfer function</subject><subject>Optical communication</subject><subject>Receivers</subject><subject>Transfer functions</subject><subject>Visible light communications</subject><subject>White light</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcFrztzkrRNLnVMnXQfsOltSNsEOremS1pk_nozNrw6L5znPQcehO4BjwCweMqX6xHBIEZEYAFUXKABCAYxhoxdhoxDBqDJNbrxfoMxsISyAVrOde_UNprr7se67_hFeV1FH7ZuumjVqq4OO9VU0VrvWnsEJ_tebevfsLFNZKyLZtPZIv7Kx9Hq4Du9u0VXRm29vjvPIfp8nazH73G-eJuOn_O4pJR2cZZqqApqFDOG8YyWRCuOOeGUEk1TQ6DgBigumACTViwtDBNFVoiSlxVXjA7R4-lu6-y-176TG9u7JryUhJCEZyKhJFD4RJXOeu-0ka2rd8odJGB59CaDN3n0Js_eQuXhVKm11v84TzmkFNM_X8doDA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Rajbhandari, Sujan</creator><creator>Hyunchae Chun</creator><creator>Faulkner, Grahame</creator><creator>Haas, Harald</creator><creator>Enyuan Xie</creator><creator>McKendry, Jonathan J. D.</creator><creator>Herrnsdorf, Johannes</creator><creator>Gu, Erdan</creator><creator>Dawson, Martin D.</creator><creator>O'Brien, Dominic</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8742-118X</orcidid><orcidid>https://orcid.org/0000-0002-3907-4862</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid><orcidid>https://orcid.org/0000-0001-7776-8091</orcidid><orcidid>https://orcid.org/0000-0002-3856-5782</orcidid><orcidid>https://orcid.org/0000-0002-6639-2989</orcidid><orcidid>https://orcid.org/0000-0002-6379-3955</orcidid></search><sort><creationdate>20190601</creationdate><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><author>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Communications systems</topic><topic>Crosstalk</topic><topic>Decision feedback equalizers</topic><topic>Decoding</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>joint equalization</topic><topic>Light emitting diodes</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>multiple input multiple output</topic><topic>Neural networks</topic><topic>non-linear transfer function</topic><topic>Optical communication</topic><topic>Receivers</topic><topic>Transfer functions</topic><topic>Visible light communications</topic><topic>White light</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajbhandari, Sujan</creatorcontrib><creatorcontrib>Hyunchae Chun</creatorcontrib><creatorcontrib>Faulkner, Grahame</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><creatorcontrib>Enyuan Xie</creatorcontrib><creatorcontrib>McKendry, Jonathan J. D.</creatorcontrib><creatorcontrib>Herrnsdorf, Johannes</creatorcontrib><creatorcontrib>Gu, Erdan</creatorcontrib><creatorcontrib>Dawson, Martin D.</creatorcontrib><creatorcontrib>O'Brien, Dominic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajbhandari, Sujan</au><au>Hyunchae Chun</au><au>Faulkner, Grahame</au><au>Haas, Harald</au><au>Enyuan Xie</au><au>McKendry, Jonathan J. D.</au><au>Herrnsdorf, Johannes</au><au>Gu, Erdan</au><au>Dawson, Martin D.</au><au>O'Brien, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><spage>821</spage><epage>824</epage><pages>821-824</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2019.2909139</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8742-118X</orcidid><orcidid>https://orcid.org/0000-0002-3907-4862</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid><orcidid>https://orcid.org/0000-0001-7776-8091</orcidid><orcidid>https://orcid.org/0000-0002-3856-5782</orcidid><orcidid>https://orcid.org/0000-0002-6639-2989</orcidid><orcidid>https://orcid.org/0000-0002-6379-3955</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1041-1135
ispartof IEEE photonics technology letters, 2019-06, Vol.31 (11), p.821-824
issn 1041-1135
1941-0174
language eng
recordid cdi_proquest_journals_2225879532
source IEEE Electronic Library (IEL)
subjects Algorithms
artificial neural network
Artificial neural networks
Communications systems
Crosstalk
Decision feedback equalizers
Decoding
Equalization
Equalizers
joint equalization
Light emitting diodes
MIMO (control systems)
MIMO communication
multiple input multiple output
Neural networks
non-linear transfer function
Optical communication
Receivers
Transfer functions
Visible light communications
White light
title Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Joint%20Spatial%20and%20Temporal%20Equalization%20for%20MIMO-VLC%20System&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Rajbhandari,%20Sujan&rft.date=2019-06-01&rft.volume=31&rft.issue=11&rft.spage=821&rft.epage=824&rft.pages=821-824&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2019.2909139&rft_dat=%3Cproquest_RIE%3E2225879532%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225879532&rft_id=info:pmid/&rft_ieee_id=8681630&rfr_iscdi=true