Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System
The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suff...
Gespeichert in:
Veröffentlicht in: | IEEE photonics technology letters 2019-06, Vol.31 (11), p.821-824 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 11 |
container_start_page | 821 |
container_title | IEEE photonics technology letters |
container_volume | 31 |
creator | Rajbhandari, Sujan Hyunchae Chun Faulkner, Grahame Haas, Harald Enyuan Xie McKendry, Jonathan J. D. Herrnsdorf, Johannes Gu, Erdan Dawson, Martin D. O'Brien, Dominic |
description | The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk. |
doi_str_mv | 10.1109/LPT.2019.2909139 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2225879532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8681630</ieee_id><sourcerecordid>2225879532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcFrztzkrRNLnVMnXQfsOltSNsEOremS1pk_nozNrw6L5znPQcehO4BjwCweMqX6xHBIEZEYAFUXKABCAYxhoxdhoxDBqDJNbrxfoMxsISyAVrOde_UNprr7se67_hFeV1FH7ZuumjVqq4OO9VU0VrvWnsEJ_tebevfsLFNZKyLZtPZIv7Kx9Hq4Du9u0VXRm29vjvPIfp8nazH73G-eJuOn_O4pJR2cZZqqApqFDOG8YyWRCuOOeGUEk1TQ6DgBigumACTViwtDBNFVoiSlxVXjA7R4-lu6-y-176TG9u7JryUhJCEZyKhJFD4RJXOeu-0ka2rd8odJGB59CaDN3n0Js_eQuXhVKm11v84TzmkFNM_X8doDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225879532</pqid></control><display><type>article</type><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><source>IEEE Electronic Library (IEL)</source><creator>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</creator><creatorcontrib>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</creatorcontrib><description>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</description><identifier>ISSN: 1041-1135</identifier><identifier>EISSN: 1941-0174</identifier><identifier>DOI: 10.1109/LPT.2019.2909139</identifier><identifier>CODEN: IPTLEL</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; artificial neural network ; Artificial neural networks ; Communications systems ; Crosstalk ; Decision feedback equalizers ; Decoding ; Equalization ; Equalizers ; joint equalization ; Light emitting diodes ; MIMO (control systems) ; MIMO communication ; multiple input multiple output ; Neural networks ; non-linear transfer function ; Optical communication ; Receivers ; Transfer functions ; Visible light communications ; White light</subject><ispartof>IEEE photonics technology letters, 2019-06, Vol.31 (11), p.821-824</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</citedby><cites>FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</cites><orcidid>0000-0001-8742-118X ; 0000-0002-3907-4862 ; 0000-0001-9705-2701 ; 0000-0001-7776-8091 ; 0000-0002-3856-5782 ; 0000-0002-6639-2989 ; 0000-0002-6379-3955</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8681630$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8681630$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rajbhandari, Sujan</creatorcontrib><creatorcontrib>Hyunchae Chun</creatorcontrib><creatorcontrib>Faulkner, Grahame</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><creatorcontrib>Enyuan Xie</creatorcontrib><creatorcontrib>McKendry, Jonathan J. D.</creatorcontrib><creatorcontrib>Herrnsdorf, Johannes</creatorcontrib><creatorcontrib>Gu, Erdan</creatorcontrib><creatorcontrib>Dawson, Martin D.</creatorcontrib><creatorcontrib>O'Brien, Dominic</creatorcontrib><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><title>IEEE photonics technology letters</title><addtitle>LPT</addtitle><description>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</description><subject>Algorithms</subject><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Communications systems</subject><subject>Crosstalk</subject><subject>Decision feedback equalizers</subject><subject>Decoding</subject><subject>Equalization</subject><subject>Equalizers</subject><subject>joint equalization</subject><subject>Light emitting diodes</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>multiple input multiple output</subject><subject>Neural networks</subject><subject>non-linear transfer function</subject><subject>Optical communication</subject><subject>Receivers</subject><subject>Transfer functions</subject><subject>Visible light communications</subject><subject>White light</subject><issn>1041-1135</issn><issn>1941-0174</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcFrztzkrRNLnVMnXQfsOltSNsEOremS1pk_nozNrw6L5znPQcehO4BjwCweMqX6xHBIEZEYAFUXKABCAYxhoxdhoxDBqDJNbrxfoMxsISyAVrOde_UNprr7se67_hFeV1FH7ZuumjVqq4OO9VU0VrvWnsEJ_tebevfsLFNZKyLZtPZIv7Kx9Hq4Du9u0VXRm29vjvPIfp8nazH73G-eJuOn_O4pJR2cZZqqApqFDOG8YyWRCuOOeGUEk1TQ6DgBigumACTViwtDBNFVoiSlxVXjA7R4-lu6-y-176TG9u7JryUhJCEZyKhJFD4RJXOeu-0ka2rd8odJGB59CaDN3n0Js_eQuXhVKm11v84TzmkFNM_X8doDA</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Rajbhandari, Sujan</creator><creator>Hyunchae Chun</creator><creator>Faulkner, Grahame</creator><creator>Haas, Harald</creator><creator>Enyuan Xie</creator><creator>McKendry, Jonathan J. D.</creator><creator>Herrnsdorf, Johannes</creator><creator>Gu, Erdan</creator><creator>Dawson, Martin D.</creator><creator>O'Brien, Dominic</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8742-118X</orcidid><orcidid>https://orcid.org/0000-0002-3907-4862</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid><orcidid>https://orcid.org/0000-0001-7776-8091</orcidid><orcidid>https://orcid.org/0000-0002-3856-5782</orcidid><orcidid>https://orcid.org/0000-0002-6639-2989</orcidid><orcidid>https://orcid.org/0000-0002-6379-3955</orcidid></search><sort><creationdate>20190601</creationdate><title>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</title><author>Rajbhandari, Sujan ; Hyunchae Chun ; Faulkner, Grahame ; Haas, Harald ; Enyuan Xie ; McKendry, Jonathan J. D. ; Herrnsdorf, Johannes ; Gu, Erdan ; Dawson, Martin D. ; O'Brien, Dominic</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-76e1db3fa4ff4873c2ea80828332e36f21b8f130b491f6d46bf49b7b9c8cd8a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Communications systems</topic><topic>Crosstalk</topic><topic>Decision feedback equalizers</topic><topic>Decoding</topic><topic>Equalization</topic><topic>Equalizers</topic><topic>joint equalization</topic><topic>Light emitting diodes</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>multiple input multiple output</topic><topic>Neural networks</topic><topic>non-linear transfer function</topic><topic>Optical communication</topic><topic>Receivers</topic><topic>Transfer functions</topic><topic>Visible light communications</topic><topic>White light</topic><toplevel>online_resources</toplevel><creatorcontrib>Rajbhandari, Sujan</creatorcontrib><creatorcontrib>Hyunchae Chun</creatorcontrib><creatorcontrib>Faulkner, Grahame</creatorcontrib><creatorcontrib>Haas, Harald</creatorcontrib><creatorcontrib>Enyuan Xie</creatorcontrib><creatorcontrib>McKendry, Jonathan J. D.</creatorcontrib><creatorcontrib>Herrnsdorf, Johannes</creatorcontrib><creatorcontrib>Gu, Erdan</creatorcontrib><creatorcontrib>Dawson, Martin D.</creatorcontrib><creatorcontrib>O'Brien, Dominic</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE photonics technology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rajbhandari, Sujan</au><au>Hyunchae Chun</au><au>Faulkner, Grahame</au><au>Haas, Harald</au><au>Enyuan Xie</au><au>McKendry, Jonathan J. D.</au><au>Herrnsdorf, Johannes</au><au>Gu, Erdan</au><au>Dawson, Martin D.</au><au>O'Brien, Dominic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System</atitle><jtitle>IEEE photonics technology letters</jtitle><stitle>LPT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>31</volume><issue>11</issue><spage>821</spage><epage>824</epage><pages>821-824</pages><issn>1041-1135</issn><eissn>1941-0174</eissn><coden>IPTLEL</coden><abstract>The limited bandwidth of white light-emitting diode (LED) limits the achievable data rate in a visible light communication (VLC) system. A number of techniques, including multiple-input-multiple-output (MIMO) system, are investigated to increase the data rate. The high-speed optical MIMO system suffers from both spatial and temporal cross talks. The spatial cross-talk is often compensated by the MIMO decoding algorithm, while the temporal cross talk is mitigated using an equalizer. However, the LEDs have a non-linear transfer function and the performance of linear equalizers are limited. In this letter, we propose a joint spatial and temporal equalization using an artificial neural network (ANN) for an MIMO-VLC system. We demonstrate using a practical imaging/non-imaging optical MIMO link that the ANN-based joint equalization outperforms the joint equalization using a traditional decision feedback as ANN is able to compensate the non-linear transfer function as well as cross talk.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LPT.2019.2909139</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-8742-118X</orcidid><orcidid>https://orcid.org/0000-0002-3907-4862</orcidid><orcidid>https://orcid.org/0000-0001-9705-2701</orcidid><orcidid>https://orcid.org/0000-0001-7776-8091</orcidid><orcidid>https://orcid.org/0000-0002-3856-5782</orcidid><orcidid>https://orcid.org/0000-0002-6639-2989</orcidid><orcidid>https://orcid.org/0000-0002-6379-3955</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1041-1135 |
ispartof | IEEE photonics technology letters, 2019-06, Vol.31 (11), p.821-824 |
issn | 1041-1135 1941-0174 |
language | eng |
recordid | cdi_proquest_journals_2225879532 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms artificial neural network Artificial neural networks Communications systems Crosstalk Decision feedback equalizers Decoding Equalization Equalizers joint equalization Light emitting diodes MIMO (control systems) MIMO communication multiple input multiple output Neural networks non-linear transfer function Optical communication Receivers Transfer functions Visible light communications White light |
title | Neural Network-Based Joint Spatial and Temporal Equalization for MIMO-VLC System |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Network-Based%20Joint%20Spatial%20and%20Temporal%20Equalization%20for%20MIMO-VLC%20System&rft.jtitle=IEEE%20photonics%20technology%20letters&rft.au=Rajbhandari,%20Sujan&rft.date=2019-06-01&rft.volume=31&rft.issue=11&rft.spage=821&rft.epage=824&rft.pages=821-824&rft.issn=1041-1135&rft.eissn=1941-0174&rft.coden=IPTLEL&rft_id=info:doi/10.1109/LPT.2019.2909139&rft_dat=%3Cproquest_RIE%3E2225879532%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225879532&rft_id=info:pmid/&rft_ieee_id=8681630&rfr_iscdi=true |