An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing

•Load balancing strategies are needed to improve performance, and make effective use of the network capillarity.•The unfairness in the path length caused by the load balancing has little effect in general.•Our exact approach is a valuable tool for evaluating heuristic solutions. This paper presents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2019-06, Vol.106, p.28-35
Hauptverfasser: Pinto, Leizer L., Fernandes, Kátia C.C., Cardoso, Kleber V., Maculan, Nelson
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 28
container_title Computers & operations research
container_volume 106
creator Pinto, Leizer L.
Fernandes, Kátia C.C.
Cardoso, Kleber V.
Maculan, Nelson
description •Load balancing strategies are needed to improve performance, and make effective use of the network capillarity.•The unfairness in the path length caused by the load balancing has little effect in general.•Our exact approach is a valuable tool for evaluating heuristic solutions. This paper presents a bi-objective network flow routing problem regarding network load balancing and flow path length. The problem is formulated within the integer programming framework and an exact and polynomial approach based on the ϵ-constraint technique is presented. In each iteration, our algorithm solves a single-objective linear integer programming subproblem. The goal of our approach is to obtain a minimal complete set of Pareto-optimal solutions. Our proposal was evaluated through several computational experiments, which included grid and random networks. The random topology was generated by the Barabási–Albert model and the settings of the network flows defined here are those commonly used in wireless sensor networks and wireless mesh networks. The analysis of the computational results provide a decision maker with valuable information about which factors most affect the solutions, for example, the smallest and largest bottleneck, the size of increment in the shortest path of the last Pareto-optimal solution and the difference between the path lengths of the first and last Pareto-optimal solutions generated.
doi_str_mv 10.1016/j.cor.2019.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225805570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054819300292</els_id><sourcerecordid>2225805570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-c619a7686f5f2fe9d2ad8e21c9e79088164cb5eba31fa859a08ab3298f7b22bb3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG8Bz61JumlTPC2L_0DwouAtJOmkprbJmnZ33W9vlvXsXGZ4vDcz_BC6piSnhJa3XW5CzBmhdU5YTsjiBM2oqIqsKvnHKZqRgvCM8IU4Rxfj2JFUFaMz5Jcew48yE1a-wevQ730YnOqxWq9jUOYT2xCxwtplQXdgJrcF7PwELUScHG1Uw-B8e5h1DwOO0KrYHBQP0y7EL2z7sMMxbKYkXqIzq_oRrv76HL0_3L-tnrKX18fn1fIlMwWvpsyUtFZVKUrLLbNQN0w1Ahg1NVQ1EYKWC6M5aFVQqwSvFRFKF6wWttKMaV3M0c1xb3rrewPjJLuwiT6dlIwxLgjnFUkuenSZGMYxgpXr6AYV95ISecAqO5mwygNWSZhMWFPm7piB9P7WQZSjceANNC4mPLIJ7p_0Lx8Cgjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225805570</pqid></control><display><type>article</type><title>An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Pinto, Leizer L. ; Fernandes, Kátia C.C. ; Cardoso, Kleber V. ; Maculan, Nelson</creator><creatorcontrib>Pinto, Leizer L. ; Fernandes, Kátia C.C. ; Cardoso, Kleber V. ; Maculan, Nelson</creatorcontrib><description>•Load balancing strategies are needed to improve performance, and make effective use of the network capillarity.•The unfairness in the path length caused by the load balancing has little effect in general.•Our exact approach is a valuable tool for evaluating heuristic solutions. This paper presents a bi-objective network flow routing problem regarding network load balancing and flow path length. The problem is formulated within the integer programming framework and an exact and polynomial approach based on the ϵ-constraint technique is presented. In each iteration, our algorithm solves a single-objective linear integer programming subproblem. The goal of our approach is to obtain a minimal complete set of Pareto-optimal solutions. Our proposal was evaluated through several computational experiments, which included grid and random networks. The random topology was generated by the Barabási–Albert model and the settings of the network flows defined here are those commonly used in wireless sensor networks and wireless mesh networks. The analysis of the computational results provide a decision maker with valuable information about which factors most affect the solutions, for example, the smallest and largest bottleneck, the size of increment in the shortest path of the last Pareto-optimal solution and the difference between the path lengths of the first and last Pareto-optimal solutions generated.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2019.02.004</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Bi-objective optimization ; Computation ; Decision analysis ; Decision making ; Finite element method ; Integer programming ; Iterative methods ; Network flow routing problem ; Operations research ; Pareto optimum ; Polynomial time ; Polynomials ; Remote sensors ; Shortest-path problems ; Topology ; Wireless networks ; Wireless sensor networks ; ϵ-constraint technique</subject><ispartof>Computers &amp; operations research, 2019-06, Vol.106, p.28-35</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jun 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-c619a7686f5f2fe9d2ad8e21c9e79088164cb5eba31fa859a08ab3298f7b22bb3</citedby><cites>FETCH-LOGICAL-c357t-c619a7686f5f2fe9d2ad8e21c9e79088164cb5eba31fa859a08ab3298f7b22bb3</cites><orcidid>0000-0001-5152-5323 ; 0000-0002-2025-6308</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2019.02.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Pinto, Leizer L.</creatorcontrib><creatorcontrib>Fernandes, Kátia C.C.</creatorcontrib><creatorcontrib>Cardoso, Kleber V.</creatorcontrib><creatorcontrib>Maculan, Nelson</creatorcontrib><title>An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing</title><title>Computers &amp; operations research</title><description>•Load balancing strategies are needed to improve performance, and make effective use of the network capillarity.•The unfairness in the path length caused by the load balancing has little effect in general.•Our exact approach is a valuable tool for evaluating heuristic solutions. This paper presents a bi-objective network flow routing problem regarding network load balancing and flow path length. The problem is formulated within the integer programming framework and an exact and polynomial approach based on the ϵ-constraint technique is presented. In each iteration, our algorithm solves a single-objective linear integer programming subproblem. The goal of our approach is to obtain a minimal complete set of Pareto-optimal solutions. Our proposal was evaluated through several computational experiments, which included grid and random networks. The random topology was generated by the Barabási–Albert model and the settings of the network flows defined here are those commonly used in wireless sensor networks and wireless mesh networks. The analysis of the computational results provide a decision maker with valuable information about which factors most affect the solutions, for example, the smallest and largest bottleneck, the size of increment in the shortest path of the last Pareto-optimal solution and the difference between the path lengths of the first and last Pareto-optimal solutions generated.</description><subject>Algorithms</subject><subject>Bi-objective optimization</subject><subject>Computation</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Finite element method</subject><subject>Integer programming</subject><subject>Iterative methods</subject><subject>Network flow routing problem</subject><subject>Operations research</subject><subject>Pareto optimum</subject><subject>Polynomial time</subject><subject>Polynomials</subject><subject>Remote sensors</subject><subject>Shortest-path problems</subject><subject>Topology</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>ϵ-constraint technique</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG8Bz61JumlTPC2L_0DwouAtJOmkprbJmnZ33W9vlvXsXGZ4vDcz_BC6piSnhJa3XW5CzBmhdU5YTsjiBM2oqIqsKvnHKZqRgvCM8IU4Rxfj2JFUFaMz5Jcew48yE1a-wevQ730YnOqxWq9jUOYT2xCxwtplQXdgJrcF7PwELUScHG1Uw-B8e5h1DwOO0KrYHBQP0y7EL2z7sMMxbKYkXqIzq_oRrv76HL0_3L-tnrKX18fn1fIlMwWvpsyUtFZVKUrLLbNQN0w1Ahg1NVQ1EYKWC6M5aFVQqwSvFRFKF6wWttKMaV3M0c1xb3rrewPjJLuwiT6dlIwxLgjnFUkuenSZGMYxgpXr6AYV95ISecAqO5mwygNWSZhMWFPm7piB9P7WQZSjceANNC4mPLIJ7p_0Lx8Cgjo</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Pinto, Leizer L.</creator><creator>Fernandes, Kátia C.C.</creator><creator>Cardoso, Kleber V.</creator><creator>Maculan, Nelson</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5152-5323</orcidid><orcidid>https://orcid.org/0000-0002-2025-6308</orcidid></search><sort><creationdate>20190601</creationdate><title>An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing</title><author>Pinto, Leizer L. ; Fernandes, Kátia C.C. ; Cardoso, Kleber V. ; Maculan, Nelson</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-c619a7686f5f2fe9d2ad8e21c9e79088164cb5eba31fa859a08ab3298f7b22bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Bi-objective optimization</topic><topic>Computation</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Finite element method</topic><topic>Integer programming</topic><topic>Iterative methods</topic><topic>Network flow routing problem</topic><topic>Operations research</topic><topic>Pareto optimum</topic><topic>Polynomial time</topic><topic>Polynomials</topic><topic>Remote sensors</topic><topic>Shortest-path problems</topic><topic>Topology</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>ϵ-constraint technique</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pinto, Leizer L.</creatorcontrib><creatorcontrib>Fernandes, Kátia C.C.</creatorcontrib><creatorcontrib>Cardoso, Kleber V.</creatorcontrib><creatorcontrib>Maculan, Nelson</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pinto, Leizer L.</au><au>Fernandes, Kátia C.C.</au><au>Cardoso, Kleber V.</au><au>Maculan, Nelson</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing</atitle><jtitle>Computers &amp; operations research</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>106</volume><spage>28</spage><epage>35</epage><pages>28-35</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•Load balancing strategies are needed to improve performance, and make effective use of the network capillarity.•The unfairness in the path length caused by the load balancing has little effect in general.•Our exact approach is a valuable tool for evaluating heuristic solutions. This paper presents a bi-objective network flow routing problem regarding network load balancing and flow path length. The problem is formulated within the integer programming framework and an exact and polynomial approach based on the ϵ-constraint technique is presented. In each iteration, our algorithm solves a single-objective linear integer programming subproblem. The goal of our approach is to obtain a minimal complete set of Pareto-optimal solutions. Our proposal was evaluated through several computational experiments, which included grid and random networks. The random topology was generated by the Barabási–Albert model and the settings of the network flows defined here are those commonly used in wireless sensor networks and wireless mesh networks. The analysis of the computational results provide a decision maker with valuable information about which factors most affect the solutions, for example, the smallest and largest bottleneck, the size of increment in the shortest path of the last Pareto-optimal solution and the difference between the path lengths of the first and last Pareto-optimal solutions generated.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2019.02.004</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5152-5323</orcidid><orcidid>https://orcid.org/0000-0002-2025-6308</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2019-06, Vol.106, p.28-35
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_2225805570
source ScienceDirect Journals (5 years ago - present)
subjects Algorithms
Bi-objective optimization
Computation
Decision analysis
Decision making
Finite element method
Integer programming
Iterative methods
Network flow routing problem
Operations research
Pareto optimum
Polynomial time
Polynomials
Remote sensors
Shortest-path problems
Topology
Wireless networks
Wireless sensor networks
ϵ-constraint technique
title An exact and polynomial approach for a bi-objective integer programming problem regarding network flow routing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A14%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20and%20polynomial%20approach%20for%20a%20bi-objective%20integer%20programming%20problem%20regarding%20network%20flow%20routing&rft.jtitle=Computers%20&%20operations%20research&rft.au=Pinto,%20Leizer%20L.&rft.date=2019-06-01&rft.volume=106&rft.spage=28&rft.epage=35&rft.pages=28-35&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2019.02.004&rft_dat=%3Cproquest_cross%3E2225805570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225805570&rft_id=info:pmid/&rft_els_id=S0305054819300292&rfr_iscdi=true