A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion
[Display omitted] •Tetragonal ZrO2 is stabilized to ambient temperature by Ar8+ irradiation.•A spontaneous martensitic transformation is triggered by an interface distortion.•Both oxygen defects and irradiation distortion help to stabilize T-phase.•Bombardment induced ZrO2 has superior stability aga...
Gespeichert in:
Veröffentlicht in: | Corrosion science 2019-05, Vol.152, p.54-59 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | |
container_start_page | 54 |
container_title | Corrosion science |
container_volume | 152 |
creator | Cao, Guoqin Yun, Yifan Xu, Hongjie Yuan, Gaihuan Hu, Junhua Shao, Guosheng |
description | [Display omitted]
•Tetragonal ZrO2 is stabilized to ambient temperature by Ar8+ irradiation.•A spontaneous martensitic transformation is triggered by an interface distortion.•Both oxygen defects and irradiation distortion help to stabilize T-phase.•Bombardment induced ZrO2 has superior stability against corrosion compared with as deposited.•The well persistence of T-ZrO2 endows enhanced barrier effect to oxygen.
Natural grown ZrO2 cannot effectively protect Zr alloy due to the poor phase stability. In this work, a pre-defected ZrO2 coating was fabricated on Zr alloy and further bombarded by Ar8+. A spontaneous martensitic transformation in ZrO2 coating was triggered by lattice distortion and gradient mismatch on the interface. Additionally, Ar8+ bombardment induced the formation of interstitial-vacancy pairs in ZrO2. DFT modeling proved that the interstitial-vacancy pairs were superior in stabilizing T-phase ZrO2, compared with native oxygen vacancies. A mechanism for enhanced corrosion resistance was proposed based on the unique interface and defect state. |
doi_str_mv | 10.1016/j.corsci.2019.03.009 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225798752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010938X18316986</els_id><sourcerecordid>2225798752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-76966155046118da437e2cc5fe021b2072dbf90f5706dbd59e9a58275e70c6443</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62TtGmaiyDiP1jwouAtZNOpm8VNNMkq-umNdPHoaZjh997MPEJOGdQMWHe-rm2IybqaA1M1NDWA2iMz1ktVQau6fTIDYFCppn8-JEcprQGgsDAj-ZJu0K6Md2lDTUqY0gZ9pmOINK-QGp9dVdxjSC54Gkb67aIN3hlqg8nOv9CtH3CCy3xwecel7dLG0lnzSj9NLsifzTE5GM1rwpNdnZOnm-vHq7tq8XB7f3W5qGzTtLmSneo6JgS0HWP9YNpGIrdWjAicLTlIPixHBaOQ0A3LQShURvRcCpRgu7Zt5uRs8n2L4X2LKet12EZfVmrOuZCql4IXqp0oW65LEUf9Ft3GxC_NQP_mq9d6ylf_5quh0SXfIruYZFg--HAYdSHQWxxcRJv1ENz_Bj9UPIci</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225798752</pqid></control><display><type>article</type><title>A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion</title><source>Elsevier ScienceDirect Journals</source><creator>Cao, Guoqin ; Yun, Yifan ; Xu, Hongjie ; Yuan, Gaihuan ; Hu, Junhua ; Shao, Guosheng</creator><creatorcontrib>Cao, Guoqin ; Yun, Yifan ; Xu, Hongjie ; Yuan, Gaihuan ; Hu, Junhua ; Shao, Guosheng</creatorcontrib><description>[Display omitted]
•Tetragonal ZrO2 is stabilized to ambient temperature by Ar8+ irradiation.•A spontaneous martensitic transformation is triggered by an interface distortion.•Both oxygen defects and irradiation distortion help to stabilize T-phase.•Bombardment induced ZrO2 has superior stability against corrosion compared with as deposited.•The well persistence of T-ZrO2 endows enhanced barrier effect to oxygen.
Natural grown ZrO2 cannot effectively protect Zr alloy due to the poor phase stability. In this work, a pre-defected ZrO2 coating was fabricated on Zr alloy and further bombarded by Ar8+. A spontaneous martensitic transformation in ZrO2 coating was triggered by lattice distortion and gradient mismatch on the interface. Additionally, Ar8+ bombardment induced the formation of interstitial-vacancy pairs in ZrO2. DFT modeling proved that the interstitial-vacancy pairs were superior in stabilizing T-phase ZrO2, compared with native oxygen vacancies. A mechanism for enhanced corrosion resistance was proposed based on the unique interface and defect state.</description><identifier>ISSN: 0010-938X</identifier><identifier>EISSN: 1879-0496</identifier><identifier>DOI: 10.1016/j.corsci.2019.03.009</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>A: Zirconium ; B: Raman spectroscopy ; B: TEM ; Bombardment ; C: Oxidation ; C: Oxide coatings ; Corrosion ; Corrosion mechanisms ; Corrosion prevention ; Corrosion resistance ; Lattice vacancies ; Martensitic transformations ; Phase stability ; Protective coatings ; Zirconium base alloys ; Zirconium dioxide</subject><ispartof>Corrosion science, 2019-05, Vol.152, p.54-59</ispartof><rights>2019 Elsevier Ltd</rights><rights>Copyright Elsevier BV May 15, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-76966155046118da437e2cc5fe021b2072dbf90f5706dbd59e9a58275e70c6443</citedby><cites>FETCH-LOGICAL-c334t-76966155046118da437e2cc5fe021b2072dbf90f5706dbd59e9a58275e70c6443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0010938X18316986$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yun, Yifan</creatorcontrib><creatorcontrib>Xu, Hongjie</creatorcontrib><creatorcontrib>Yuan, Gaihuan</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><title>A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion</title><title>Corrosion science</title><description>[Display omitted]
•Tetragonal ZrO2 is stabilized to ambient temperature by Ar8+ irradiation.•A spontaneous martensitic transformation is triggered by an interface distortion.•Both oxygen defects and irradiation distortion help to stabilize T-phase.•Bombardment induced ZrO2 has superior stability against corrosion compared with as deposited.•The well persistence of T-ZrO2 endows enhanced barrier effect to oxygen.
Natural grown ZrO2 cannot effectively protect Zr alloy due to the poor phase stability. In this work, a pre-defected ZrO2 coating was fabricated on Zr alloy and further bombarded by Ar8+. A spontaneous martensitic transformation in ZrO2 coating was triggered by lattice distortion and gradient mismatch on the interface. Additionally, Ar8+ bombardment induced the formation of interstitial-vacancy pairs in ZrO2. DFT modeling proved that the interstitial-vacancy pairs were superior in stabilizing T-phase ZrO2, compared with native oxygen vacancies. A mechanism for enhanced corrosion resistance was proposed based on the unique interface and defect state.</description><subject>A: Zirconium</subject><subject>B: Raman spectroscopy</subject><subject>B: TEM</subject><subject>Bombardment</subject><subject>C: Oxidation</subject><subject>C: Oxide coatings</subject><subject>Corrosion</subject><subject>Corrosion mechanisms</subject><subject>Corrosion prevention</subject><subject>Corrosion resistance</subject><subject>Lattice vacancies</subject><subject>Martensitic transformations</subject><subject>Phase stability</subject><subject>Protective coatings</subject><subject>Zirconium base alloys</subject><subject>Zirconium dioxide</subject><issn>0010-938X</issn><issn>1879-0496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-Aw8Bz62TtGmaiyDiP1jwouAtZNOpm8VNNMkq-umNdPHoaZjh997MPEJOGdQMWHe-rm2IybqaA1M1NDWA2iMz1ktVQau6fTIDYFCppn8-JEcprQGgsDAj-ZJu0K6Md2lDTUqY0gZ9pmOINK-QGp9dVdxjSC54Gkb67aIN3hlqg8nOv9CtH3CCy3xwecel7dLG0lnzSj9NLsifzTE5GM1rwpNdnZOnm-vHq7tq8XB7f3W5qGzTtLmSneo6JgS0HWP9YNpGIrdWjAicLTlIPixHBaOQ0A3LQShURvRcCpRgu7Zt5uRs8n2L4X2LKet12EZfVmrOuZCql4IXqp0oW65LEUf9Ft3GxC_NQP_mq9d6ylf_5quh0SXfIruYZFg--HAYdSHQWxxcRJv1ENz_Bj9UPIci</recordid><startdate>20190515</startdate><enddate>20190515</enddate><creator>Cao, Guoqin</creator><creator>Yun, Yifan</creator><creator>Xu, Hongjie</creator><creator>Yuan, Gaihuan</creator><creator>Hu, Junhua</creator><creator>Shao, Guosheng</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20190515</creationdate><title>A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion</title><author>Cao, Guoqin ; Yun, Yifan ; Xu, Hongjie ; Yuan, Gaihuan ; Hu, Junhua ; Shao, Guosheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-76966155046118da437e2cc5fe021b2072dbf90f5706dbd59e9a58275e70c6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>A: Zirconium</topic><topic>B: Raman spectroscopy</topic><topic>B: TEM</topic><topic>Bombardment</topic><topic>C: Oxidation</topic><topic>C: Oxide coatings</topic><topic>Corrosion</topic><topic>Corrosion mechanisms</topic><topic>Corrosion prevention</topic><topic>Corrosion resistance</topic><topic>Lattice vacancies</topic><topic>Martensitic transformations</topic><topic>Phase stability</topic><topic>Protective coatings</topic><topic>Zirconium base alloys</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Guoqin</creatorcontrib><creatorcontrib>Yun, Yifan</creatorcontrib><creatorcontrib>Xu, Hongjie</creatorcontrib><creatorcontrib>Yuan, Gaihuan</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Shao, Guosheng</creatorcontrib><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Corrosion science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Guoqin</au><au>Yun, Yifan</au><au>Xu, Hongjie</au><au>Yuan, Gaihuan</au><au>Hu, Junhua</au><au>Shao, Guosheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion</atitle><jtitle>Corrosion science</jtitle><date>2019-05-15</date><risdate>2019</risdate><volume>152</volume><spage>54</spage><epage>59</epage><pages>54-59</pages><issn>0010-938X</issn><eissn>1879-0496</eissn><abstract>[Display omitted]
•Tetragonal ZrO2 is stabilized to ambient temperature by Ar8+ irradiation.•A spontaneous martensitic transformation is triggered by an interface distortion.•Both oxygen defects and irradiation distortion help to stabilize T-phase.•Bombardment induced ZrO2 has superior stability against corrosion compared with as deposited.•The well persistence of T-ZrO2 endows enhanced barrier effect to oxygen.
Natural grown ZrO2 cannot effectively protect Zr alloy due to the poor phase stability. In this work, a pre-defected ZrO2 coating was fabricated on Zr alloy and further bombarded by Ar8+. A spontaneous martensitic transformation in ZrO2 coating was triggered by lattice distortion and gradient mismatch on the interface. Additionally, Ar8+ bombardment induced the formation of interstitial-vacancy pairs in ZrO2. DFT modeling proved that the interstitial-vacancy pairs were superior in stabilizing T-phase ZrO2, compared with native oxygen vacancies. A mechanism for enhanced corrosion resistance was proposed based on the unique interface and defect state.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.corsci.2019.03.009</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-938X |
ispartof | Corrosion science, 2019-05, Vol.152, p.54-59 |
issn | 0010-938X 1879-0496 |
language | eng |
recordid | cdi_proquest_journals_2225798752 |
source | Elsevier ScienceDirect Journals |
subjects | A: Zirconium B: Raman spectroscopy B: TEM Bombardment C: Oxidation C: Oxide coatings Corrosion Corrosion mechanisms Corrosion prevention Corrosion resistance Lattice vacancies Martensitic transformations Phase stability Protective coatings Zirconium base alloys Zirconium dioxide |
title | A mechanism assessment for the anti-corrosion of zirconia coating under the condition of subcritical water corrosion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20mechanism%20assessment%20for%20the%20anti-corrosion%20of%20zirconia%20coating%20under%20the%20condition%20of%20subcritical%20water%20corrosion&rft.jtitle=Corrosion%20science&rft.au=Cao,%20Guoqin&rft.date=2019-05-15&rft.volume=152&rft.spage=54&rft.epage=59&rft.pages=54-59&rft.issn=0010-938X&rft.eissn=1879-0496&rft_id=info:doi/10.1016/j.corsci.2019.03.009&rft_dat=%3Cproquest_cross%3E2225798752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225798752&rft_id=info:pmid/&rft_els_id=S0010938X18316986&rfr_iscdi=true |