A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery
As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2019-05, Vol.9 (19), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 9 |
creator | Xiao, Yao Zhu, Yan‐Fang Yao, Hu‐Rong Wang, Peng‐Fei Zhang, Xu‐Dong Li, Hongliang Yang, Xinan Gu, Lin Li, Yong‐Chun Wang, Tao Yin, Ya‐Xia Guo, Xiao‐Dong Zhong, Ben‐He Guo, Yu‐Guo |
description | As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.
A stable copper and magnesium cosubstituted Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material consisting of multiple‐layer oriented stacking nanoflakes is reported. An optimal structure design and a chemical element substitution strategy are demonstrated to greatly improve Na+ transport kinetics and structural stability of P2‐type cathode material, resulting in high‐rate and long cycle life for a sodium‐ion battery. |
doi_str_mv | 10.1002/aenm.201803978 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225597700</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225597700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3568-5d4e7af20ac5097ecc36caa4fb8f68059a8b838809e595d55ea832fb10a062a93</originalsourceid><addsrcrecordid>eNqFkE1PwkAQhjdGEwly9byJZ3B2t9vuHpGgkICYoOfNtN1KST9wW6K9-RP8jf4Sl2Dw6FzmI887k3kJuWYwYgD8Fm1VjjgwBUJH6oz0WMiCYagCOD_Vgl-SQdNswUegGQjRI-sxXbcYF5YusLPOpnT1kaeWTrDd1D4vsbUux4JmtaOz_HXz_fn1ZJ3vSqwSS9d1mu9LP5zXFb3D1tPdFbnIsGjs4Df3ycv99HkyGy5WD_PJeDFMhAzVUKaBjTDjgIkEHdkkEWGCGGSxykIFUqOKlVAKtJVaplJa9C9kMQOEkKMWfXJz3Ltz9dveNq3Z1ntX-ZOGcy6ljiIAT42OVOLqpnE2MzuXl-g6w8AcvDMH78zJOy_QR8F7XtjuH9qMp4_LP-0PBWRz2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225597700</pqid></control><display><type>article</type><title>A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xiao, Yao ; Zhu, Yan‐Fang ; Yao, Hu‐Rong ; Wang, Peng‐Fei ; Zhang, Xu‐Dong ; Li, Hongliang ; Yang, Xinan ; Gu, Lin ; Li, Yong‐Chun ; Wang, Tao ; Yin, Ya‐Xia ; Guo, Xiao‐Dong ; Zhong, Ben‐He ; Guo, Yu‐Guo</creator><creatorcontrib>Xiao, Yao ; Zhu, Yan‐Fang ; Yao, Hu‐Rong ; Wang, Peng‐Fei ; Zhang, Xu‐Dong ; Li, Hongliang ; Yang, Xinan ; Gu, Lin ; Li, Yong‐Chun ; Wang, Tao ; Yin, Ya‐Xia ; Guo, Xiao‐Dong ; Zhong, Ben‐He ; Guo, Yu‐Guo</creatorcontrib><description>As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.
A stable copper and magnesium cosubstituted Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material consisting of multiple‐layer oriented stacking nanoflakes is reported. An optimal structure design and a chemical element substitution strategy are demonstrated to greatly improve Na+ transport kinetics and structural stability of P2‐type cathode material, resulting in high‐rate and long cycle life for a sodium‐ion battery.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201803978</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>cathode materials ; Cathodes ; Chemical elements ; electrochemistry ; Electrode materials ; Electron energy loss spectroscopy ; Energy dissipation ; Energy transmission ; layered oxides ; Magnesium ; Morphology ; nanoflakes ; Organic chemistry ; Phase stability ; Reaction kinetics ; Rechargeable batteries ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Sodium-ion batteries ; Substitution reactions ; Thermal stability ; Transmission electron microscopy ; X-ray diffraction</subject><ispartof>Advanced energy materials, 2019-05, Vol.9 (19), p.n/a</ispartof><rights>2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3568-5d4e7af20ac5097ecc36caa4fb8f68059a8b838809e595d55ea832fb10a062a93</citedby><cites>FETCH-LOGICAL-c3568-5d4e7af20ac5097ecc36caa4fb8f68059a8b838809e595d55ea832fb10a062a93</cites><orcidid>0000-0003-0322-8476</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201803978$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201803978$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Zhu, Yan‐Fang</creatorcontrib><creatorcontrib>Yao, Hu‐Rong</creatorcontrib><creatorcontrib>Wang, Peng‐Fei</creatorcontrib><creatorcontrib>Zhang, Xu‐Dong</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Yang, Xinan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Li, Yong‐Chun</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Guo, Xiao‐Dong</creatorcontrib><creatorcontrib>Zhong, Ben‐He</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><title>A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery</title><title>Advanced energy materials</title><description>As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.
A stable copper and magnesium cosubstituted Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material consisting of multiple‐layer oriented stacking nanoflakes is reported. An optimal structure design and a chemical element substitution strategy are demonstrated to greatly improve Na+ transport kinetics and structural stability of P2‐type cathode material, resulting in high‐rate and long cycle life for a sodium‐ion battery.</description><subject>cathode materials</subject><subject>Cathodes</subject><subject>Chemical elements</subject><subject>electrochemistry</subject><subject>Electrode materials</subject><subject>Electron energy loss spectroscopy</subject><subject>Energy dissipation</subject><subject>Energy transmission</subject><subject>layered oxides</subject><subject>Magnesium</subject><subject>Morphology</subject><subject>nanoflakes</subject><subject>Organic chemistry</subject><subject>Phase stability</subject><subject>Reaction kinetics</subject><subject>Rechargeable batteries</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Sodium-ion batteries</subject><subject>Substitution reactions</subject><subject>Thermal stability</subject><subject>Transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAQhjdGEwly9byJZ3B2t9vuHpGgkICYoOfNtN1KST9wW6K9-RP8jf4Sl2Dw6FzmI887k3kJuWYwYgD8Fm1VjjgwBUJH6oz0WMiCYagCOD_Vgl-SQdNswUegGQjRI-sxXbcYF5YusLPOpnT1kaeWTrDd1D4vsbUux4JmtaOz_HXz_fn1ZJ3vSqwSS9d1mu9LP5zXFb3D1tPdFbnIsGjs4Df3ycv99HkyGy5WD_PJeDFMhAzVUKaBjTDjgIkEHdkkEWGCGGSxykIFUqOKlVAKtJVaplJa9C9kMQOEkKMWfXJz3Ltz9dveNq3Z1ntX-ZOGcy6ljiIAT42OVOLqpnE2MzuXl-g6w8AcvDMH78zJOy_QR8F7XtjuH9qMp4_LP-0PBWRz2w</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Xiao, Yao</creator><creator>Zhu, Yan‐Fang</creator><creator>Yao, Hu‐Rong</creator><creator>Wang, Peng‐Fei</creator><creator>Zhang, Xu‐Dong</creator><creator>Li, Hongliang</creator><creator>Yang, Xinan</creator><creator>Gu, Lin</creator><creator>Li, Yong‐Chun</creator><creator>Wang, Tao</creator><creator>Yin, Ya‐Xia</creator><creator>Guo, Xiao‐Dong</creator><creator>Zhong, Ben‐He</creator><creator>Guo, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></search><sort><creationdate>20190501</creationdate><title>A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery</title><author>Xiao, Yao ; Zhu, Yan‐Fang ; Yao, Hu‐Rong ; Wang, Peng‐Fei ; Zhang, Xu‐Dong ; Li, Hongliang ; Yang, Xinan ; Gu, Lin ; Li, Yong‐Chun ; Wang, Tao ; Yin, Ya‐Xia ; Guo, Xiao‐Dong ; Zhong, Ben‐He ; Guo, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3568-5d4e7af20ac5097ecc36caa4fb8f68059a8b838809e595d55ea832fb10a062a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>cathode materials</topic><topic>Cathodes</topic><topic>Chemical elements</topic><topic>electrochemistry</topic><topic>Electrode materials</topic><topic>Electron energy loss spectroscopy</topic><topic>Energy dissipation</topic><topic>Energy transmission</topic><topic>layered oxides</topic><topic>Magnesium</topic><topic>Morphology</topic><topic>nanoflakes</topic><topic>Organic chemistry</topic><topic>Phase stability</topic><topic>Reaction kinetics</topic><topic>Rechargeable batteries</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Sodium-ion batteries</topic><topic>Substitution reactions</topic><topic>Thermal stability</topic><topic>Transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Yao</creatorcontrib><creatorcontrib>Zhu, Yan‐Fang</creatorcontrib><creatorcontrib>Yao, Hu‐Rong</creatorcontrib><creatorcontrib>Wang, Peng‐Fei</creatorcontrib><creatorcontrib>Zhang, Xu‐Dong</creatorcontrib><creatorcontrib>Li, Hongliang</creatorcontrib><creatorcontrib>Yang, Xinan</creatorcontrib><creatorcontrib>Gu, Lin</creatorcontrib><creatorcontrib>Li, Yong‐Chun</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yin, Ya‐Xia</creatorcontrib><creatorcontrib>Guo, Xiao‐Dong</creatorcontrib><creatorcontrib>Zhong, Ben‐He</creatorcontrib><creatorcontrib>Guo, Yu‐Guo</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Yao</au><au>Zhu, Yan‐Fang</au><au>Yao, Hu‐Rong</au><au>Wang, Peng‐Fei</au><au>Zhang, Xu‐Dong</au><au>Li, Hongliang</au><au>Yang, Xinan</au><au>Gu, Lin</au><au>Li, Yong‐Chun</au><au>Wang, Tao</au><au>Yin, Ya‐Xia</au><au>Guo, Xiao‐Dong</au><au>Zhong, Ben‐He</au><au>Guo, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery</atitle><jtitle>Advanced energy materials</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>9</volume><issue>19</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>As one of the most promising cathode candidates for room‐temperature sodium‐ion batteries (SIBs), P2‐type layered oxides face the challenge of simultaneously realizing high‐rate performance while achieving long cycle life. Here, a stable Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material is proposed that consists of multiple‐layer oriented stacking nanoflakes, in which the nickel sites are partially substituted by copper and magnesium, a characteristic of the material that is confirmed by multiscale scanning transmission electron microscopy and electron energy loss spectroscopy techniques. Owing to the optimal morphology structure modulation and chemical element substitution strategy, the electrode displays remarkable rate performance (73% capacity retention at 30C compared to 0.5C) and outstanding cycling stability in Na half‐cell system couple with unprecedented full battery performance. The underlying thermal stability, phase stability, and Na+ storage mechanisms are clearly elucidated through the systematical characterizations of electrochemical behaviors, in situ X‐ray diffraction at different temperatures, and operando X‐ray diffraction upon Na+ deintercalation/intercalation. Surprisingly, a quasi‐solid‐solution reaction is switched to an absolute solid‐solution reaction and a capacitive Na+ storage mechanism is demonstrated via quantitative electrochemical kinetics calculation during charge/discharge process. Such a simple and effective strategy might reveal a new avenue into the rational design of excellent rate capability and long cycle stability cathode materials for practical SIBs.
A stable copper and magnesium cosubstituted Na2/3Ni1/6Mn2/3Cu1/9Mg1/18O2 cathode material consisting of multiple‐layer oriented stacking nanoflakes is reported. An optimal structure design and a chemical element substitution strategy are demonstrated to greatly improve Na+ transport kinetics and structural stability of P2‐type cathode material, resulting in high‐rate and long cycle life for a sodium‐ion battery.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201803978</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0322-8476</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2019-05, Vol.9 (19), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_proquest_journals_2225597700 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | cathode materials Cathodes Chemical elements electrochemistry Electrode materials Electron energy loss spectroscopy Energy dissipation Energy transmission layered oxides Magnesium Morphology nanoflakes Organic chemistry Phase stability Reaction kinetics Rechargeable batteries Scanning electron microscopy Scanning transmission electron microscopy Sodium-ion batteries Substitution reactions Thermal stability Transmission electron microscopy X-ray diffraction |
title | A Stable Layered Oxide Cathode Material for High‐Performance Sodium‐Ion Battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Stable%20Layered%20Oxide%20Cathode%20Material%20for%20High%E2%80%90Performance%20Sodium%E2%80%90Ion%20Battery&rft.jtitle=Advanced%20energy%20materials&rft.au=Xiao,%20Yao&rft.date=2019-05-01&rft.volume=9&rft.issue=19&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201803978&rft_dat=%3Cproquest_cross%3E2225597700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225597700&rft_id=info:pmid/&rfr_iscdi=true |