Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries
In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and t...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2019-05, Vol.348, p.632-659 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 659 |
---|---|
container_issue | |
container_start_page | 632 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 348 |
creator | Lu, Kaizhou Augarde, Charles E. Coombs, William M. Hu, Zhendong |
description | In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters.
•Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters. |
doi_str_mv | 10.1016/j.cma.2019.01.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225232657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251930060X</els_id><sourcerecordid>2225232657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</originalsourceid><addsrcrecordid>eNp9kM1OxCAURonRxHH0AdyRuG4FWmhHV8b_xMSNiUtC4ZJh7EAFxuiT-LoyGd3K5i74zr1fDkKnlNSUUHG-qvVa1YzQRU1oTRq-h2a07xYVo02_j2aEtLzqesYP0VFKK1JeT9kMfb-CesNuPYXksgs-4WDxjYtOL0fIeAgbb1T8wjp48xtwHqcwOoPXoJfKO50u8BXWsXy_b2DL602M4DNW0xSD0ktIWHmD4TODT2UHzgFPKmanxvELTxFSoQcwf-ccpGN0YNWY4OR3ztHL3e3L9UP19Hz_eH31VOlG9LniwhIx9G3fCEo6AdZaMUAHdhDWMMqpNVrTTvCWGyuMGAZulVoI2i76phXNHJ3t1paipXzKchU20ZeLkjHGWcME70qK7lI6hpQiWDlFty5aJCVyq1-uZNEvt_olobLoL8zljoHS_sNBlEk78BqMi6CzNMH9Q_8AI32RWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225232657</pqid></control><display><type>article</type><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</creator><creatorcontrib>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</creatorcontrib><description>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters.
•Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.01.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary conditions ; Dirichlet boundary conditions ; Dirichlet problem ; Elasticity ; Empirical analysis ; Fictitious domain ; Finite element method ; Formulations ; Immersed boundary ; Implicit boundary method ; Inclination ; Lagrange multiplier ; Lagrange multipliers ; Methods ; Nitsche’s method ; Parameters ; Solid mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-05, Vol.348, p.632-659</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</citedby><cites>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</cites><orcidid>0000-0003-2099-1676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.01.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lu, Kaizhou</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Hu, Zhendong</creatorcontrib><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><title>Computer methods in applied mechanics and engineering</title><description>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters.
•Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</description><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Elasticity</subject><subject>Empirical analysis</subject><subject>Fictitious domain</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Immersed boundary</subject><subject>Implicit boundary method</subject><subject>Inclination</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers</subject><subject>Methods</subject><subject>Nitsche’s method</subject><subject>Parameters</subject><subject>Solid mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAURonRxHH0AdyRuG4FWmhHV8b_xMSNiUtC4ZJh7EAFxuiT-LoyGd3K5i74zr1fDkKnlNSUUHG-qvVa1YzQRU1oTRq-h2a07xYVo02_j2aEtLzqesYP0VFKK1JeT9kMfb-CesNuPYXksgs-4WDxjYtOL0fIeAgbb1T8wjp48xtwHqcwOoPXoJfKO50u8BXWsXy_b2DL602M4DNW0xSD0ktIWHmD4TODT2UHzgFPKmanxvELTxFSoQcwf-ccpGN0YNWY4OR3ztHL3e3L9UP19Hz_eH31VOlG9LniwhIx9G3fCEo6AdZaMUAHdhDWMMqpNVrTTvCWGyuMGAZulVoI2i76phXNHJ3t1paipXzKchU20ZeLkjHGWcME70qK7lI6hpQiWDlFty5aJCVyq1-uZNEvt_olobLoL8zljoHS_sNBlEk78BqMi6CzNMH9Q_8AI32RWA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Lu, Kaizhou</creator><creator>Augarde, Charles E.</creator><creator>Coombs, William M.</creator><creator>Hu, Zhendong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid></search><sort><creationdate>20190501</creationdate><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><author>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Elasticity</topic><topic>Empirical analysis</topic><topic>Fictitious domain</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Immersed boundary</topic><topic>Implicit boundary method</topic><topic>Inclination</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers</topic><topic>Methods</topic><topic>Nitsche’s method</topic><topic>Parameters</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kaizhou</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Hu, Zhendong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kaizhou</au><au>Augarde, Charles E.</au><au>Coombs, William M.</au><au>Hu, Zhendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>348</volume><spage>632</spage><epage>659</epage><pages>632-659</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters.
•Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.01.035</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2019-05, Vol.348, p.632-659 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2225232657 |
source | Access via ScienceDirect (Elsevier) |
subjects | Boundary conditions Dirichlet boundary conditions Dirichlet problem Elasticity Empirical analysis Fictitious domain Finite element method Formulations Immersed boundary Implicit boundary method Inclination Lagrange multiplier Lagrange multipliers Methods Nitsche’s method Parameters Solid mechanics |
title | Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20impositions%20of%20Dirichlet%20boundary%20conditions%20in%20solid%20mechanics:%20A%20critique%20of%20current%20approaches%20and%20extension%20to%20partially%20prescribed%20boundaries&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Lu,%20Kaizhou&rft.date=2019-05-01&rft.volume=348&rft.spage=632&rft.epage=659&rft.pages=632-659&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.01.035&rft_dat=%3Cproquest_cross%3E2225232657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225232657&rft_id=info:pmid/&rft_els_id=S004578251930060X&rfr_iscdi=true |