Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries

In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-05, Vol.348, p.632-659
Hauptverfasser: Lu, Kaizhou, Augarde, Charles E., Coombs, William M., Hu, Zhendong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue
container_start_page 632
container_title Computer methods in applied mechanics and engineering
container_volume 348
creator Lu, Kaizhou
Augarde, Charles E.
Coombs, William M.
Hu, Zhendong
description In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters. •Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.
doi_str_mv 10.1016/j.cma.2019.01.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225232657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004578251930060X</els_id><sourcerecordid>2225232657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</originalsourceid><addsrcrecordid>eNp9kM1OxCAURonRxHH0AdyRuG4FWmhHV8b_xMSNiUtC4ZJh7EAFxuiT-LoyGd3K5i74zr1fDkKnlNSUUHG-qvVa1YzQRU1oTRq-h2a07xYVo02_j2aEtLzqesYP0VFKK1JeT9kMfb-CesNuPYXksgs-4WDxjYtOL0fIeAgbb1T8wjp48xtwHqcwOoPXoJfKO50u8BXWsXy_b2DL602M4DNW0xSD0ktIWHmD4TODT2UHzgFPKmanxvELTxFSoQcwf-ccpGN0YNWY4OR3ztHL3e3L9UP19Hz_eH31VOlG9LniwhIx9G3fCEo6AdZaMUAHdhDWMMqpNVrTTvCWGyuMGAZulVoI2i76phXNHJ3t1paipXzKchU20ZeLkjHGWcME70qK7lI6hpQiWDlFty5aJCVyq1-uZNEvt_olobLoL8zljoHS_sNBlEk78BqMi6CzNMH9Q_8AI32RWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225232657</pqid></control><display><type>article</type><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><source>Access via ScienceDirect (Elsevier)</source><creator>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</creator><creatorcontrib>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</creatorcontrib><description>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters. •Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.01.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Boundary conditions ; Dirichlet boundary conditions ; Dirichlet problem ; Elasticity ; Empirical analysis ; Fictitious domain ; Finite element method ; Formulations ; Immersed boundary ; Implicit boundary method ; Inclination ; Lagrange multiplier ; Lagrange multipliers ; Methods ; Nitsche’s method ; Parameters ; Solid mechanics</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-05, Vol.348, p.632-659</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV May 1, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</citedby><cites>FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</cites><orcidid>0000-0003-2099-1676</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2019.01.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Lu, Kaizhou</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Hu, Zhendong</creatorcontrib><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><title>Computer methods in applied mechanics and engineering</title><description>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters. •Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</description><subject>Boundary conditions</subject><subject>Dirichlet boundary conditions</subject><subject>Dirichlet problem</subject><subject>Elasticity</subject><subject>Empirical analysis</subject><subject>Fictitious domain</subject><subject>Finite element method</subject><subject>Formulations</subject><subject>Immersed boundary</subject><subject>Implicit boundary method</subject><subject>Inclination</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers</subject><subject>Methods</subject><subject>Nitsche’s method</subject><subject>Parameters</subject><subject>Solid mechanics</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kM1OxCAURonRxHH0AdyRuG4FWmhHV8b_xMSNiUtC4ZJh7EAFxuiT-LoyGd3K5i74zr1fDkKnlNSUUHG-qvVa1YzQRU1oTRq-h2a07xYVo02_j2aEtLzqesYP0VFKK1JeT9kMfb-CesNuPYXksgs-4WDxjYtOL0fIeAgbb1T8wjp48xtwHqcwOoPXoJfKO50u8BXWsXy_b2DL602M4DNW0xSD0ktIWHmD4TODT2UHzgFPKmanxvELTxFSoQcwf-ccpGN0YNWY4OR3ztHL3e3L9UP19Hz_eH31VOlG9LniwhIx9G3fCEo6AdZaMUAHdhDWMMqpNVrTTvCWGyuMGAZulVoI2i76phXNHJ3t1paipXzKchU20ZeLkjHGWcME70qK7lI6hpQiWDlFty5aJCVyq1-uZNEvt_olobLoL8zljoHS_sNBlEk78BqMi6CzNMH9Q_8AI32RWA</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Lu, Kaizhou</creator><creator>Augarde, Charles E.</creator><creator>Coombs, William M.</creator><creator>Hu, Zhendong</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid></search><sort><creationdate>20190501</creationdate><title>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</title><author>Lu, Kaizhou ; Augarde, Charles E. ; Coombs, William M. ; Hu, Zhendong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-56f06b848361076efff6be7efb6fd2151fdcc176545df6d6bb5faa9614983463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boundary conditions</topic><topic>Dirichlet boundary conditions</topic><topic>Dirichlet problem</topic><topic>Elasticity</topic><topic>Empirical analysis</topic><topic>Fictitious domain</topic><topic>Finite element method</topic><topic>Formulations</topic><topic>Immersed boundary</topic><topic>Implicit boundary method</topic><topic>Inclination</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers</topic><topic>Methods</topic><topic>Nitsche’s method</topic><topic>Parameters</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Kaizhou</creatorcontrib><creatorcontrib>Augarde, Charles E.</creatorcontrib><creatorcontrib>Coombs, William M.</creatorcontrib><creatorcontrib>Hu, Zhendong</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Kaizhou</au><au>Augarde, Charles E.</au><au>Coombs, William M.</au><au>Hu, Zhendong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-05-01</date><risdate>2019</risdate><volume>348</volume><spage>632</spage><epage>659</epage><pages>632-659</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this article we first review various approaches developed to date for the weak imposition of Dirichlet boundary conditions in fictitious domain analysis for elasticity problems. The Hellinger–Reissner (H–R) principle, the linked Lagrange multiplier (LLM) method, the implicit boundary method and the fat boundary method are discussed along with the well-known Lagrange multiplier, penalty and Nitsche’s methods. We state these approaches in a common form starting with energy functionals and weak forms, and discretise using the fictitious domain finite element method. Previous formulations of these methods were in general developed for full prescription along the Dirichlet boundary, which generally implies no local effect of boundary inclination. However, partially prescribed conditions (such as the structural roller boundary condition) with inclination have wide practical applications in engineering. Here we provide techniques of imposing such boundary conditions in these methods in detail. For those methods that contain algorithmic parameters, such as the penalty and Nitsche’s methods, extra computation or empirical estimation is necessary to decide values of the parameters, and hence we discuss parametric and convergence behaviours through numerical examples to provide guidance on the choice of parameters. •Detailed review of the methods of fictitious domain boundary condition enforcement.•Extension to include mixed Dirichlet/Neumann boundaries at any inclination.•An analysis of the stability of the methods with respect to algorithmic parameters.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.01.035</doi><tpages>28</tpages><orcidid>https://orcid.org/0000-0003-2099-1676</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2019-05, Vol.348, p.632-659
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2225232657
source Access via ScienceDirect (Elsevier)
subjects Boundary conditions
Dirichlet boundary conditions
Dirichlet problem
Elasticity
Empirical analysis
Fictitious domain
Finite element method
Formulations
Immersed boundary
Implicit boundary method
Inclination
Lagrange multiplier
Lagrange multipliers
Methods
Nitsche’s method
Parameters
Solid mechanics
title Weak impositions of Dirichlet boundary conditions in solid mechanics: A critique of current approaches and extension to partially prescribed boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A01%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20impositions%20of%20Dirichlet%20boundary%20conditions%20in%20solid%20mechanics:%20A%20critique%20of%20current%20approaches%20and%20extension%20to%20partially%20prescribed%20boundaries&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Lu,%20Kaizhou&rft.date=2019-05-01&rft.volume=348&rft.spage=632&rft.epage=659&rft.pages=632-659&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.01.035&rft_dat=%3Cproquest_cross%3E2225232657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225232657&rft_id=info:pmid/&rft_els_id=S004578251930060X&rfr_iscdi=true