Real Forms of Elliptic Integrable Systems
We describe the real forms of classical elliptic integrable systems such as the elliptic Calogero-Moser system and the elliptic Euler-Arnold top in the framework of a general scheme for constructing real reductions for a Hitchin system.
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2019-04, Vol.199 (1), p.513-524 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 524 |
---|---|
container_issue | 1 |
container_start_page | 513 |
container_title | Theoretical and mathematical physics |
container_volume | 199 |
creator | Grekov, A. M. Dotsenko, E. I. |
description | We describe the real forms of classical elliptic integrable systems such as the elliptic Calogero-Moser system and the elliptic Euler-Arnold top in the framework of a general scheme for constructing real reductions for a Hitchin system. |
doi_str_mv | 10.1134/S0040577919040032 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225209044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225209044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-78c691d2f32cea5cc7251eec656e164bdcd0d8d8025b0d8fd1ea2a1f48e9c42f3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRMFb_AG8BTx6iM7vZfByltLVQEKyel81mUlLy5W566H_vhggexNM8eO_3hhnG7hGeEEX8vAeIQaZpjrkXIPgFC1CmIsqFEJcsmOxo8q_ZjXNHAATIMGCP76SbcN3b1oV9Fa6aph7G2oTbbqSD1UVD4f7sRmrdLbuqdOPo7mcu2Od69bF8jXZvm-3yZRcZgckYpZlJcix5JbghLY1JuUQik8iEMImL0pRQZmUGXBZeVCWS5hqrOKPcxB5bsIe5d7D914ncqI79yXZ-peKcSw7-wNincE4Z2ztnqVKDrVttzwpBTR9Rfz7iGT4zzme7A9nf5v-hb1sxYNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225209044</pqid></control><display><type>article</type><title>Real Forms of Elliptic Integrable Systems</title><source>SpringerNature Journals</source><creator>Grekov, A. M. ; Dotsenko, E. I.</creator><creatorcontrib>Grekov, A. M. ; Dotsenko, E. I.</creatorcontrib><description>We describe the real forms of classical elliptic integrable systems such as the elliptic Calogero-Moser system and the elliptic Euler-Arnold top in the framework of a general scheme for constructing real reductions for a Hitchin system.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577919040032</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2019-04, Vol.199 (1), p.513-524</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-78c691d2f32cea5cc7251eec656e164bdcd0d8d8025b0d8fd1ea2a1f48e9c42f3</citedby><cites>FETCH-LOGICAL-c316t-78c691d2f32cea5cc7251eec656e164bdcd0d8d8025b0d8fd1ea2a1f48e9c42f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577919040032$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577919040032$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Grekov, A. M.</creatorcontrib><creatorcontrib>Dotsenko, E. I.</creatorcontrib><title>Real Forms of Elliptic Integrable Systems</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We describe the real forms of classical elliptic integrable systems such as the elliptic Calogero-Moser system and the elliptic Euler-Arnold top in the framework of a general scheme for constructing real reductions for a Hitchin system.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRMFb_AG8BTx6iM7vZfByltLVQEKyel81mUlLy5W566H_vhggexNM8eO_3hhnG7hGeEEX8vAeIQaZpjrkXIPgFC1CmIsqFEJcsmOxo8q_ZjXNHAATIMGCP76SbcN3b1oV9Fa6aph7G2oTbbqSD1UVD4f7sRmrdLbuqdOPo7mcu2Od69bF8jXZvm-3yZRcZgckYpZlJcix5JbghLY1JuUQik8iEMImL0pRQZmUGXBZeVCWS5hqrOKPcxB5bsIe5d7D914ncqI79yXZ-peKcSw7-wNincE4Z2ztnqVKDrVttzwpBTR9Rfz7iGT4zzme7A9nf5v-hb1sxYNw</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Grekov, A. M.</creator><creator>Dotsenko, E. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Real Forms of Elliptic Integrable Systems</title><author>Grekov, A. M. ; Dotsenko, E. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-78c691d2f32cea5cc7251eec656e164bdcd0d8d8025b0d8fd1ea2a1f48e9c42f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grekov, A. M.</creatorcontrib><creatorcontrib>Dotsenko, E. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grekov, A. M.</au><au>Dotsenko, E. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real Forms of Elliptic Integrable Systems</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>199</volume><issue>1</issue><spage>513</spage><epage>524</epage><pages>513-524</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We describe the real forms of classical elliptic integrable systems such as the elliptic Calogero-Moser system and the elliptic Euler-Arnold top in the framework of a general scheme for constructing real reductions for a Hitchin system.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577919040032</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2019-04, Vol.199 (1), p.513-524 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_2225209044 |
source | SpringerNature Journals |
subjects | Applications of Mathematics Mathematical and Computational Physics Physics Physics and Astronomy Theoretical |
title | Real Forms of Elliptic Integrable Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real%20Forms%20of%20Elliptic%20Integrable%20Systems&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Grekov,%20A.%20M.&rft.date=2019-04-01&rft.volume=199&rft.issue=1&rft.spage=513&rft.epage=524&rft.pages=513-524&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577919040032&rft_dat=%3Cproquest_cross%3E2225209044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225209044&rft_id=info:pmid/&rfr_iscdi=true |