General Fourier coefficients

It is well known that if f ∈ L 2 ( 0 , 1 ) is an arbitrary function ( f ( x ) ≁ 0 , x ∈ [ 0 , 1 ] ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to ℓ 2 . Thus in the general case it is impossible to estimate these coefficients by moduli of continuit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2019-06, Vol.158 (1), p.109-131
Hauptverfasser: Gogoladze, L., Tsagareishvili, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 131
container_issue 1
container_start_page 109
container_title Acta mathematica Hungarica
container_volume 158
creator Gogoladze, L.
Tsagareishvili, V.
description It is well known that if f ∈ L 2 ( 0 , 1 ) is an arbitrary function ( f ( x ) ≁ 0 , x ∈ [ 0 , 1 ] ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to ℓ 2 . Thus in the general case it is impossible to estimate these coefficients by moduli of continuity or moduli of smoothness of the given functions. In the present paper conditions are found which should be satisfied by ONS so that the coefficients of some classes of functions can be estimated by modulus of continuity or modulus of smoothness of these functions.
doi_str_mv 10.1007/s10474-019-00911-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225208752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225208752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-51bde8dd1dce4c672266b88201c5e0e0b193b685f36ba4bcb5b4466a6a9155b03</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gHgoeF6dmf3I5ijFVqHgRc9LdjORlJrU3fTQf280gjdPc3ne9x0eIa4R7hCguM8IutASsJQAJaI8nogZGuckWUWnYgakrDRU6nNxkfMWAIwCPRM3a-44VbvFqj-kltMi9tw0bWy5G_KlOGuqXear3zsXb6vH1-WT3Lysn5cPGxmpgEEaDDW7usY6so62ILI2OEeA0TAwBCxVsM40yoZKhxhM0NraylYlGhNAzcXt1LtP_eeB8-C34zfdOOmJyBC4wtBI0UTF1OecuPH71H5U6egR_LcFP1nwowX_Y8Efx5CaQnmEu3dOf9X_pL4AATJeWQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225208752</pqid></control><display><type>article</type><title>General Fourier coefficients</title><source>Springer Nature - Complete Springer Journals</source><creator>Gogoladze, L. ; Tsagareishvili, V.</creator><creatorcontrib>Gogoladze, L. ; Tsagareishvili, V.</creatorcontrib><description>It is well known that if f ∈ L 2 ( 0 , 1 ) is an arbitrary function ( f ( x ) ≁ 0 , x ∈ [ 0 , 1 ] ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to ℓ 2 . Thus in the general case it is impossible to estimate these coefficients by moduli of continuity or moduli of smoothness of the given functions. In the present paper conditions are found which should be satisfied by ONS so that the coefficients of some classes of functions can be estimated by modulus of continuity or modulus of smoothness of these functions.</description><identifier>ISSN: 0236-5294</identifier><identifier>EISSN: 1588-2632</identifier><identifier>DOI: 10.1007/s10474-019-00911-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Coefficients ; Mathematics ; Mathematics and Statistics ; Smoothness</subject><ispartof>Acta mathematica Hungarica, 2019-06, Vol.158 (1), p.109-131</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-51bde8dd1dce4c672266b88201c5e0e0b193b685f36ba4bcb5b4466a6a9155b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10474-019-00911-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10474-019-00911-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gogoladze, L.</creatorcontrib><creatorcontrib>Tsagareishvili, V.</creatorcontrib><title>General Fourier coefficients</title><title>Acta mathematica Hungarica</title><addtitle>Acta Math. Hungar</addtitle><description>It is well known that if f ∈ L 2 ( 0 , 1 ) is an arbitrary function ( f ( x ) ≁ 0 , x ∈ [ 0 , 1 ] ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to ℓ 2 . Thus in the general case it is impossible to estimate these coefficients by moduli of continuity or moduli of smoothness of the given functions. In the present paper conditions are found which should be satisfied by ONS so that the coefficients of some classes of functions can be estimated by modulus of continuity or modulus of smoothness of these functions.</description><subject>Coefficients</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Smoothness</subject><issn>0236-5294</issn><issn>1588-2632</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gHgoeF6dmf3I5ijFVqHgRc9LdjORlJrU3fTQf280gjdPc3ne9x0eIa4R7hCguM8IutASsJQAJaI8nogZGuckWUWnYgakrDRU6nNxkfMWAIwCPRM3a-44VbvFqj-kltMi9tw0bWy5G_KlOGuqXear3zsXb6vH1-WT3Lysn5cPGxmpgEEaDDW7usY6so62ILI2OEeA0TAwBCxVsM40yoZKhxhM0NraylYlGhNAzcXt1LtP_eeB8-C34zfdOOmJyBC4wtBI0UTF1OecuPH71H5U6egR_LcFP1nwowX_Y8Efx5CaQnmEu3dOf9X_pL4AATJeWQ</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Gogoladze, L.</creator><creator>Tsagareishvili, V.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>General Fourier coefficients</title><author>Gogoladze, L. ; Tsagareishvili, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-51bde8dd1dce4c672266b88201c5e0e0b193b685f36ba4bcb5b4466a6a9155b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Coefficients</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Smoothness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L.</creatorcontrib><creatorcontrib>Tsagareishvili, V.</creatorcontrib><collection>CrossRef</collection><jtitle>Acta mathematica Hungarica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L.</au><au>Tsagareishvili, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>General Fourier coefficients</atitle><jtitle>Acta mathematica Hungarica</jtitle><stitle>Acta Math. Hungar</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>158</volume><issue>1</issue><spage>109</spage><epage>131</epage><pages>109-131</pages><issn>0236-5294</issn><eissn>1588-2632</eissn><abstract>It is well known that if f ∈ L 2 ( 0 , 1 ) is an arbitrary function ( f ( x ) ≁ 0 , x ∈ [ 0 , 1 ] ) then its Fourier coefficients with respect to general orthonormal systems (ONS) may belong only to ℓ 2 . Thus in the general case it is impossible to estimate these coefficients by moduli of continuity or moduli of smoothness of the given functions. In the present paper conditions are found which should be satisfied by ONS so that the coefficients of some classes of functions can be estimated by modulus of continuity or modulus of smoothness of these functions.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10474-019-00911-y</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0236-5294
ispartof Acta mathematica Hungarica, 2019-06, Vol.158 (1), p.109-131
issn 0236-5294
1588-2632
language eng
recordid cdi_proquest_journals_2225208752
source Springer Nature - Complete Springer Journals
subjects Coefficients
Mathematics
Mathematics and Statistics
Smoothness
title General Fourier coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A53%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=General%20Fourier%20coefficients&rft.jtitle=Acta%20mathematica%20Hungarica&rft.au=Gogoladze,%20L.&rft.date=2019-06-01&rft.volume=158&rft.issue=1&rft.spage=109&rft.epage=131&rft.pages=109-131&rft.issn=0236-5294&rft.eissn=1588-2632&rft_id=info:doi/10.1007/s10474-019-00911-y&rft_dat=%3Cproquest_cross%3E2225208752%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225208752&rft_id=info:pmid/&rfr_iscdi=true