Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree

We describe periodic Gibbs measures for the Potts-SOS model on a Cayley tree of order k ≥ 1, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and mathematical physics 2019-04, Vol.199 (1), p.586-592
1. Verfasser: Rasulova, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 592
container_issue 1
container_start_page 586
container_title Theoretical and mathematical physics
container_volume 199
creator Rasulova, M. A.
description We describe periodic Gibbs measures for the Potts-SOS model on a Cayley tree of order k ≥ 1, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.
doi_str_mv 10.1134/S0040577919040081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2225208589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2225208589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-a38983a4a81e55ee64e1543da0de1b7a91491a4586f361622e3daa8ca534bb213</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ZPs3pSiVWhpofUcJslEU2q37iaHfvsmVPAgnubB-7038Bi7BXEPoPTDSggtTJY5cL0QFs7YCEymEqeUOmejwU4G_5JdxbgRAgZoxB6XFBpfNSWfNkUR-ZwwdoEir33g7SfxpW_bmKwWKz73FW2533HkEzxs6cDXgeiaXdS4jXTzc8fs_eV5PXlNZovp2-RplpQK0jZBZZ1VqNECGUOUagKjVYWiIigydKAdoDY2rVUKqZTUe2hLNEoXhQQ1Znen3n3w3x3FNt_4Luz6l7mU0khhjXU9BSeqDD7GQHW-D80XhkMOIh-Gyv8M1WfkKRN7dvdB4bf5_9ARkS9nOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2225208589</pqid></control><display><type>article</type><title>Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree</title><source>SpringerLink Journals - AutoHoldings</source><creator>Rasulova, M. A.</creator><creatorcontrib>Rasulova, M. A.</creatorcontrib><description>We describe periodic Gibbs measures for the Potts-SOS model on a Cayley tree of order k ≥ 1, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577919040081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Subgroups ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2019-04, Vol.199 (1), p.586-592</ispartof><rights>Pleiades Publishing, Ltd. 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-a38983a4a81e55ee64e1543da0de1b7a91491a4586f361622e3daa8ca534bb213</citedby><cites>FETCH-LOGICAL-c316t-a38983a4a81e55ee64e1543da0de1b7a91491a4586f361622e3daa8ca534bb213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577919040081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577919040081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Rasulova, M. A.</creatorcontrib><title>Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We describe periodic Gibbs measures for the Potts-SOS model on a Cayley tree of order k ≥ 1, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Subgroups</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLcFz9Gd_ZPs3pSiVWhpofUcJslEU2q37iaHfvsmVPAgnubB-7038Bi7BXEPoPTDSggtTJY5cL0QFs7YCEymEqeUOmejwU4G_5JdxbgRAgZoxB6XFBpfNSWfNkUR-ZwwdoEir33g7SfxpW_bmKwWKz73FW2533HkEzxs6cDXgeiaXdS4jXTzc8fs_eV5PXlNZovp2-RplpQK0jZBZZ1VqNECGUOUagKjVYWiIigydKAdoDY2rVUKqZTUe2hLNEoXhQQ1Znen3n3w3x3FNt_4Luz6l7mU0khhjXU9BSeqDD7GQHW-D80XhkMOIh-Gyv8M1WfkKRN7dvdB4bf5_9ARkS9nOA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Rasulova, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190401</creationdate><title>Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree</title><author>Rasulova, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-a38983a4a81e55ee64e1543da0de1b7a91491a4586f361622e3daa8ca534bb213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Subgroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rasulova, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rasulova, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>199</volume><issue>1</issue><spage>586</spage><epage>592</epage><pages>586-592</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We describe periodic Gibbs measures for the Potts-SOS model on a Cayley tree of order k ≥ 1, i.e. a characterization of such measures with respect to any normal subgroup of finite index of the group representation of the Cayley tree.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577919040081</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5779
ispartof Theoretical and mathematical physics, 2019-04, Vol.199 (1), p.586-592
issn 0040-5779
1573-9333
language eng
recordid cdi_proquest_journals_2225208589
source SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematical and Computational Physics
Physics
Physics and Astronomy
Subgroups
Theoretical
title Periodic Gibbs Measures for the Potts-SOS Model on a Cayley Tree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T03%3A33%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Periodic%20Gibbs%20Measures%20for%20the%20Potts-SOS%20Model%20on%20a%20Cayley%20Tree&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Rasulova,%20M.%20A.&rft.date=2019-04-01&rft.volume=199&rft.issue=1&rft.spage=586&rft.epage=592&rft.pages=586-592&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577919040081&rft_dat=%3Cproquest_cross%3E2225208589%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2225208589&rft_id=info:pmid/&rfr_iscdi=true