Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes

This report demonstrates the modification of reduced graphene oxide (RGO) nanosheets by decorating SnO2 nanorod bundles and nanoparticles on the surface for effective use of the graphene as supercapacitor electrode materials. The shape‐ and density‐controlled SnO2 nanostructures were prepared throug...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemElectroChem 2019-05, Vol.6 (9), p.2503-2509
Hauptverfasser: Noh, Yuseong, Kim, Yoongon, Han, Hyunsu, Jung, Wan‐Gil, Kim, Jong Guk, Kim, Youngmin, Kim, Hyung Ju, Kim, Bong‐Joong, Kim, Won Bae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2509
container_issue 9
container_start_page 2503
container_title ChemElectroChem
container_volume 6
creator Noh, Yuseong
Kim, Yoongon
Han, Hyunsu
Jung, Wan‐Gil
Kim, Jong Guk
Kim, Youngmin
Kim, Hyung Ju
Kim, Bong‐Joong
Kim, Won Bae
description This report demonstrates the modification of reduced graphene oxide (RGO) nanosheets by decorating SnO2 nanorod bundles and nanoparticles on the surface for effective use of the graphene as supercapacitor electrode materials. The shape‐ and density‐controlled SnO2 nanostructures were prepared through hydrothermal synthesis and acted as spacer materials to physically inhibit the overlapping of the RGO sheets; this is known as the restacking effect. When measuring the electrochemical properties, the electrode comprising RGO with SnO2 nanorod bundles (RGO−SnO2−NR) revealed a higher capacitance, rate capability, and cyclic stability than the RGO electrode with SnO2 nanoparticles (RGO−SnO2−NP) and the bare RGO electrode, indicating the effective role of the surface‐implanted SnO2 spacer during the electrode reactions of the double‐layer capacitor. The electrochemical superiority of RGO−SnO2−NR could be explained by the fact that wedge‐like SnO2 nanorod bundles between the RGO sheets promote fast transfer and approach of electroactive species to form the electrochemical double layer at the electrode surface. Moreover, the improved mass transfer behavior of the RGO−SnO2 composite electrodes and the role of the SnO2 nanostructures were reasonably verified by various electrochemical analyses. Plant the seed: The electrochemical performance of RGO−SnO2 composite electrodes that show double‐layer capacitive characteristics varies depending on the morphology of the surface‐implanted SnO2 nanospacer. The electrode with RGO−SnO2 nanorod bundles gives the highest specific capacitance as well as the best rate performance and cyclability, which can be attributed to facilitated accessibility of the ions during the surface reactions.
doi_str_mv 10.1002/celc.201900543
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2224941171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224941171</sourcerecordid><originalsourceid>FETCH-LOGICAL-g2703-ddf73e3a8a0e23396b5245c43b053e5571995d005f4c4cf578ae6f1ece56268f3</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhgdRsNRuXQdct-YymctSh1oHigVb10OanLRTpsmYTKvd-QjiI_okplTE1TkH_gvni6JrgkcEY3oroZEjikmOMY_ZWdSjJE-GmJLk_N9-GQ2832CMCcGcZUkv-iq3rbN7UKi05vvjc-GE8Rocuoe12NfWIWEUKkQrZN3Ve0BjA251QPPOOrECVKyFE7IDV_uulh5ZjeZmRtGTMNYHE7gQWhppXRsMXeh5BrWTYU6caNdgAM3eaxVyG5Cdswr8VXShReNh8Dv70cvDeFE8DqezSVncTYcrmmI2VEqnDJjIBAbKWJ4sOY25jNkyvAacpyTPuQo4dCxjqXmaCUg0AQk8oUmmWT-6OeUGAK878F21sTtnQmVFKY3zmJCUBFV-Ur3VDRyq1tVb4Q4VwdWRe3XkXv1xr4rxtPi72A8gEHyS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224941171</pqid></control><display><type>article</type><title>Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Noh, Yuseong ; Kim, Yoongon ; Han, Hyunsu ; Jung, Wan‐Gil ; Kim, Jong Guk ; Kim, Youngmin ; Kim, Hyung Ju ; Kim, Bong‐Joong ; Kim, Won Bae</creator><creatorcontrib>Noh, Yuseong ; Kim, Yoongon ; Han, Hyunsu ; Jung, Wan‐Gil ; Kim, Jong Guk ; Kim, Youngmin ; Kim, Hyung Ju ; Kim, Bong‐Joong ; Kim, Won Bae</creatorcontrib><description>This report demonstrates the modification of reduced graphene oxide (RGO) nanosheets by decorating SnO2 nanorod bundles and nanoparticles on the surface for effective use of the graphene as supercapacitor electrode materials. The shape‐ and density‐controlled SnO2 nanostructures were prepared through hydrothermal synthesis and acted as spacer materials to physically inhibit the overlapping of the RGO sheets; this is known as the restacking effect. When measuring the electrochemical properties, the electrode comprising RGO with SnO2 nanorod bundles (RGO−SnO2−NR) revealed a higher capacitance, rate capability, and cyclic stability than the RGO electrode with SnO2 nanoparticles (RGO−SnO2−NP) and the bare RGO electrode, indicating the effective role of the surface‐implanted SnO2 spacer during the electrode reactions of the double‐layer capacitor. The electrochemical superiority of RGO−SnO2−NR could be explained by the fact that wedge‐like SnO2 nanorod bundles between the RGO sheets promote fast transfer and approach of electroactive species to form the electrochemical double layer at the electrode surface. Moreover, the improved mass transfer behavior of the RGO−SnO2 composite electrodes and the role of the SnO2 nanostructures were reasonably verified by various electrochemical analyses. Plant the seed: The electrochemical performance of RGO−SnO2 composite electrodes that show double‐layer capacitive characteristics varies depending on the morphology of the surface‐implanted SnO2 nanospacer. The electrode with RGO−SnO2 nanorod bundles gives the highest specific capacitance as well as the best rate performance and cyclability, which can be attributed to facilitated accessibility of the ions during the surface reactions.</description><identifier>ISSN: 2196-0216</identifier><identifier>EISSN: 2196-0216</identifier><identifier>DOI: 10.1002/celc.201900543</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Bundles ; Bundling ; Chemical reactions ; electric double-layer capacitors ; Electrochemical analysis ; Electrode materials ; Electrodes ; Energy storage ; Graphene ; Mass transfer ; Nanoparticles ; Nanorods ; Nanostructure ; reduced graphene oxide ; Sheets ; SnO2 nanostructure ; spacer materials ; Tin dioxide</subject><ispartof>ChemElectroChem, 2019-05, Vol.6 (9), p.2503-2509</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1251-9681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcelc.201900543$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcelc.201900543$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Noh, Yuseong</creatorcontrib><creatorcontrib>Kim, Yoongon</creatorcontrib><creatorcontrib>Han, Hyunsu</creatorcontrib><creatorcontrib>Jung, Wan‐Gil</creatorcontrib><creatorcontrib>Kim, Jong Guk</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Kim, Hyung Ju</creatorcontrib><creatorcontrib>Kim, Bong‐Joong</creatorcontrib><creatorcontrib>Kim, Won Bae</creatorcontrib><title>Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes</title><title>ChemElectroChem</title><description>This report demonstrates the modification of reduced graphene oxide (RGO) nanosheets by decorating SnO2 nanorod bundles and nanoparticles on the surface for effective use of the graphene as supercapacitor electrode materials. The shape‐ and density‐controlled SnO2 nanostructures were prepared through hydrothermal synthesis and acted as spacer materials to physically inhibit the overlapping of the RGO sheets; this is known as the restacking effect. When measuring the electrochemical properties, the electrode comprising RGO with SnO2 nanorod bundles (RGO−SnO2−NR) revealed a higher capacitance, rate capability, and cyclic stability than the RGO electrode with SnO2 nanoparticles (RGO−SnO2−NP) and the bare RGO electrode, indicating the effective role of the surface‐implanted SnO2 spacer during the electrode reactions of the double‐layer capacitor. The electrochemical superiority of RGO−SnO2−NR could be explained by the fact that wedge‐like SnO2 nanorod bundles between the RGO sheets promote fast transfer and approach of electroactive species to form the electrochemical double layer at the electrode surface. Moreover, the improved mass transfer behavior of the RGO−SnO2 composite electrodes and the role of the SnO2 nanostructures were reasonably verified by various electrochemical analyses. Plant the seed: The electrochemical performance of RGO−SnO2 composite electrodes that show double‐layer capacitive characteristics varies depending on the morphology of the surface‐implanted SnO2 nanospacer. The electrode with RGO−SnO2 nanorod bundles gives the highest specific capacitance as well as the best rate performance and cyclability, which can be attributed to facilitated accessibility of the ions during the surface reactions.</description><subject>Bundles</subject><subject>Bundling</subject><subject>Chemical reactions</subject><subject>electric double-layer capacitors</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Graphene</subject><subject>Mass transfer</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>reduced graphene oxide</subject><subject>Sheets</subject><subject>SnO2 nanostructure</subject><subject>spacer materials</subject><subject>Tin dioxide</subject><issn>2196-0216</issn><issn>2196-0216</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEUhgdRsNRuXQdct-YymctSh1oHigVb10OanLRTpsmYTKvd-QjiI_okplTE1TkH_gvni6JrgkcEY3oroZEjikmOMY_ZWdSjJE-GmJLk_N9-GQ2832CMCcGcZUkv-iq3rbN7UKi05vvjc-GE8Rocuoe12NfWIWEUKkQrZN3Ve0BjA251QPPOOrECVKyFE7IDV_uulh5ZjeZmRtGTMNYHE7gQWhppXRsMXeh5BrWTYU6caNdgAM3eaxVyG5Cdswr8VXShReNh8Dv70cvDeFE8DqezSVncTYcrmmI2VEqnDJjIBAbKWJ4sOY25jNkyvAacpyTPuQo4dCxjqXmaCUg0AQk8oUmmWT-6OeUGAK878F21sTtnQmVFKY3zmJCUBFV-Ur3VDRyq1tVb4Q4VwdWRe3XkXv1xr4rxtPi72A8gEHyS</recordid><startdate>20190502</startdate><enddate>20190502</enddate><creator>Noh, Yuseong</creator><creator>Kim, Yoongon</creator><creator>Han, Hyunsu</creator><creator>Jung, Wan‐Gil</creator><creator>Kim, Jong Guk</creator><creator>Kim, Youngmin</creator><creator>Kim, Hyung Ju</creator><creator>Kim, Bong‐Joong</creator><creator>Kim, Won Bae</creator><general>John Wiley &amp; Sons, Inc</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-1251-9681</orcidid></search><sort><creationdate>20190502</creationdate><title>Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes</title><author>Noh, Yuseong ; Kim, Yoongon ; Han, Hyunsu ; Jung, Wan‐Gil ; Kim, Jong Guk ; Kim, Youngmin ; Kim, Hyung Ju ; Kim, Bong‐Joong ; Kim, Won Bae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g2703-ddf73e3a8a0e23396b5245c43b053e5571995d005f4c4cf578ae6f1ece56268f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bundles</topic><topic>Bundling</topic><topic>Chemical reactions</topic><topic>electric double-layer capacitors</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Graphene</topic><topic>Mass transfer</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>reduced graphene oxide</topic><topic>Sheets</topic><topic>SnO2 nanostructure</topic><topic>spacer materials</topic><topic>Tin dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noh, Yuseong</creatorcontrib><creatorcontrib>Kim, Yoongon</creatorcontrib><creatorcontrib>Han, Hyunsu</creatorcontrib><creatorcontrib>Jung, Wan‐Gil</creatorcontrib><creatorcontrib>Kim, Jong Guk</creatorcontrib><creatorcontrib>Kim, Youngmin</creatorcontrib><creatorcontrib>Kim, Hyung Ju</creatorcontrib><creatorcontrib>Kim, Bong‐Joong</creatorcontrib><creatorcontrib>Kim, Won Bae</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>ChemElectroChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Yuseong</au><au>Kim, Yoongon</au><au>Han, Hyunsu</au><au>Jung, Wan‐Gil</au><au>Kim, Jong Guk</au><au>Kim, Youngmin</au><au>Kim, Hyung Ju</au><au>Kim, Bong‐Joong</au><au>Kim, Won Bae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes</atitle><jtitle>ChemElectroChem</jtitle><date>2019-05-02</date><risdate>2019</risdate><volume>6</volume><issue>9</issue><spage>2503</spage><epage>2509</epage><pages>2503-2509</pages><issn>2196-0216</issn><eissn>2196-0216</eissn><abstract>This report demonstrates the modification of reduced graphene oxide (RGO) nanosheets by decorating SnO2 nanorod bundles and nanoparticles on the surface for effective use of the graphene as supercapacitor electrode materials. The shape‐ and density‐controlled SnO2 nanostructures were prepared through hydrothermal synthesis and acted as spacer materials to physically inhibit the overlapping of the RGO sheets; this is known as the restacking effect. When measuring the electrochemical properties, the electrode comprising RGO with SnO2 nanorod bundles (RGO−SnO2−NR) revealed a higher capacitance, rate capability, and cyclic stability than the RGO electrode with SnO2 nanoparticles (RGO−SnO2−NP) and the bare RGO electrode, indicating the effective role of the surface‐implanted SnO2 spacer during the electrode reactions of the double‐layer capacitor. The electrochemical superiority of RGO−SnO2−NR could be explained by the fact that wedge‐like SnO2 nanorod bundles between the RGO sheets promote fast transfer and approach of electroactive species to form the electrochemical double layer at the electrode surface. Moreover, the improved mass transfer behavior of the RGO−SnO2 composite electrodes and the role of the SnO2 nanostructures were reasonably verified by various electrochemical analyses. Plant the seed: The electrochemical performance of RGO−SnO2 composite electrodes that show double‐layer capacitive characteristics varies depending on the morphology of the surface‐implanted SnO2 nanospacer. The electrode with RGO−SnO2 nanorod bundles gives the highest specific capacitance as well as the best rate performance and cyclability, which can be attributed to facilitated accessibility of the ions during the surface reactions.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/celc.201900543</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1251-9681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2196-0216
ispartof ChemElectroChem, 2019-05, Vol.6 (9), p.2503-2509
issn 2196-0216
2196-0216
language eng
recordid cdi_proquest_journals_2224941171
source Wiley Online Library Journals Frontfile Complete
subjects Bundles
Bundling
Chemical reactions
electric double-layer capacitors
Electrochemical analysis
Electrode materials
Electrodes
Energy storage
Graphene
Mass transfer
Nanoparticles
Nanorods
Nanostructure
reduced graphene oxide
Sheets
SnO2 nanostructure
spacer materials
Tin dioxide
title Improved Ion‐Transfer Behavior and Capacitive Energy Storage Characteristics of SnO2 Nanospacer‐Incorporated Reduced Graphene Oxide Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Ion%E2%80%90Transfer%20Behavior%20and%20Capacitive%20Energy%20Storage%20Characteristics%20of%20SnO2%20Nanospacer%E2%80%90Incorporated%20Reduced%20Graphene%20Oxide%20Electrodes&rft.jtitle=ChemElectroChem&rft.au=Noh,%20Yuseong&rft.date=2019-05-02&rft.volume=6&rft.issue=9&rft.spage=2503&rft.epage=2509&rft.pages=2503-2509&rft.issn=2196-0216&rft.eissn=2196-0216&rft_id=info:doi/10.1002/celc.201900543&rft_dat=%3Cproquest_wiley%3E2224941171%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224941171&rft_id=info:pmid/&rfr_iscdi=true