Perfect Pseudo-Matchings in cubic graphs

A perfect pseudo-matching M in a cubic graph G is a spanning subgraph of G such that every component of M is isomorphic to K_2 or to K_1,3. In view of snarks G with dominating cycle C, this is a natural generalization of perfect matchings since G-E(C) is a perfect pseudo-matching. Of special interes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-05
Hauptverfasser: Fleischner, Herbert, Behrooz Bagheri Gh, Klocker, Benedikt
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fleischner, Herbert
Behrooz Bagheri Gh
Klocker, Benedikt
description A perfect pseudo-matching M in a cubic graph G is a spanning subgraph of G such that every component of M is isomorphic to K_2 or to K_1,3. In view of snarks G with dominating cycle C, this is a natural generalization of perfect matchings since G-E(C) is a perfect pseudo-matching. Of special interest are such M where the graph G/M is planar because such G have a cycle double cover. We show that various well known classes of snarks contain planarizing perfect pseudo-matchings, and that there are at least as many snarks with planarizing perfect pseudo-matchings as there are cyclically 5-edge-connected snarks.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2224727987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224727987</sourcerecordid><originalsourceid>FETCH-proquest_journals_22247279873</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCEgtSktNLlEIKE4tTcnX9U0sSc7IzEsvVsjMU0guTcpMVkgvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIyMTcyNzSwtzY-JUAQCPPy_3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224727987</pqid></control><display><type>article</type><title>Perfect Pseudo-Matchings in cubic graphs</title><source>Free E- Journals</source><creator>Fleischner, Herbert ; Behrooz Bagheri Gh ; Klocker, Benedikt</creator><creatorcontrib>Fleischner, Herbert ; Behrooz Bagheri Gh ; Klocker, Benedikt</creatorcontrib><description>A perfect pseudo-matching M in a cubic graph G is a spanning subgraph of G such that every component of M is isomorphic to K_2 or to K_1,3. In view of snarks G with dominating cycle C, this is a natural generalization of perfect matchings since G-E(C) is a perfect pseudo-matching. Of special interest are such M where the graph G/M is planar because such G have a cycle double cover. We show that various well known classes of snarks contain planarizing perfect pseudo-matchings, and that there are at least as many snarks with planarizing perfect pseudo-matchings as there are cyclically 5-edge-connected snarks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph theory</subject><ispartof>arXiv.org, 2019-05</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Fleischner, Herbert</creatorcontrib><creatorcontrib>Behrooz Bagheri Gh</creatorcontrib><creatorcontrib>Klocker, Benedikt</creatorcontrib><title>Perfect Pseudo-Matchings in cubic graphs</title><title>arXiv.org</title><description>A perfect pseudo-matching M in a cubic graph G is a spanning subgraph of G such that every component of M is isomorphic to K_2 or to K_1,3. In view of snarks G with dominating cycle C, this is a natural generalization of perfect matchings since G-E(C) is a perfect pseudo-matching. Of special interest are such M where the graph G/M is planar because such G have a cycle double cover. We show that various well known classes of snarks contain planarizing perfect pseudo-matchings, and that there are at least as many snarks with planarizing perfect pseudo-matchings as there are cyclically 5-edge-connected snarks.</description><subject>Graph theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTQCEgtSktNLlEIKE4tTcnX9U0sSc7IzEsvVsjMU0guTcpMVkgvSizIKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjIyMTcyNzSwtzY-JUAQCPPy_3</recordid><startdate>20190511</startdate><enddate>20190511</enddate><creator>Fleischner, Herbert</creator><creator>Behrooz Bagheri Gh</creator><creator>Klocker, Benedikt</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190511</creationdate><title>Perfect Pseudo-Matchings in cubic graphs</title><author>Fleischner, Herbert ; Behrooz Bagheri Gh ; Klocker, Benedikt</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_22247279873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Graph theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Fleischner, Herbert</creatorcontrib><creatorcontrib>Behrooz Bagheri Gh</creatorcontrib><creatorcontrib>Klocker, Benedikt</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleischner, Herbert</au><au>Behrooz Bagheri Gh</au><au>Klocker, Benedikt</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Perfect Pseudo-Matchings in cubic graphs</atitle><jtitle>arXiv.org</jtitle><date>2019-05-11</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>A perfect pseudo-matching M in a cubic graph G is a spanning subgraph of G such that every component of M is isomorphic to K_2 or to K_1,3. In view of snarks G with dominating cycle C, this is a natural generalization of perfect matchings since G-E(C) is a perfect pseudo-matching. Of special interest are such M where the graph G/M is planar because such G have a cycle double cover. We show that various well known classes of snarks contain planarizing perfect pseudo-matchings, and that there are at least as many snarks with planarizing perfect pseudo-matchings as there are cyclically 5-edge-connected snarks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2224727987
source Free E- Journals
subjects Graph theory
title Perfect Pseudo-Matchings in cubic graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A07%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Perfect%20Pseudo-Matchings%20in%20cubic%20graphs&rft.jtitle=arXiv.org&rft.au=Fleischner,%20Herbert&rft.date=2019-05-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2224727987%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224727987&rft_id=info:pmid/&rfr_iscdi=true