A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection

Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classific...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Memetic computing 2019-06, Vol.11 (2), p.193-208
Hauptverfasser: Hammami, Marwa, Bechikh, Slim, Hung, Chih-Cheng, Ben Said, Lamjed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 208
container_issue 2
container_start_page 193
container_title Memetic computing
container_volume 11
creator Hammami, Marwa
Bechikh, Slim
Hung, Chih-Cheng
Ben Said, Lamjed
description Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.
doi_str_mv 10.1007/s12293-018-0269-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224405204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224405204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpA3CzxNngdZzEOVYVf1IRB-Bs2cmapgpxsZOivj2uguDEXnZlzcx6P0IugV8D5-VNBCGqjHFQjIuiYuKEzEAVOatEJU5_ZyXPySLGLU-ViVJJmJGXJX0au6Fl3m6xHto90s3Bhrahru0GDOwrmN0OA8W978ah9b0JB5qegjf1hjofqEMzjAFpxO6Y4PsLcuZMF3Hx0-fk7e72dfXA1s_3j6vlmtUZFANThQFXA7dNCbk1SuU856oBK5sSlS1k0eS8aoyoMwUWMye5swZqBGEzcGU2J1dTbvrM54hx0Fs_hj6t1EIIKXkuuEwqmFR18DEGdHoX2o90hQauj_j0hE8nfPqIT4vkEZMnJm3_juEv-X_TN3gzcyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224405204</pqid></control><display><type>article</type><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><source>SpringerLink Journals</source><creator>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</creator><creatorcontrib>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</creatorcontrib><description>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-018-0269-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classification ; Classifiers ; Complex Systems ; Control ; Data mining ; Data processing ; Datasets ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical and Computational Engineering ; Mechatronics ; Multiple objective analysis ; Population (statistical) ; Regular Research Paper ; Robotics ; Sorting algorithms</subject><ispartof>Memetic computing, 2019-06, Vol.11 (2), p.193-208</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</citedby><cites>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12293-018-0269-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12293-018-0269-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hammami, Marwa</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Ben Said, Lamjed</creatorcontrib><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</description><subject>Accuracy</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Multiple objective analysis</subject><subject>Population (statistical)</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Sorting algorithms</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpA3CzxNngdZzEOVYVf1IRB-Bs2cmapgpxsZOivj2uguDEXnZlzcx6P0IugV8D5-VNBCGqjHFQjIuiYuKEzEAVOatEJU5_ZyXPySLGLU-ViVJJmJGXJX0au6Fl3m6xHto90s3Bhrahru0GDOwrmN0OA8W978ah9b0JB5qegjf1hjofqEMzjAFpxO6Y4PsLcuZMF3Hx0-fk7e72dfXA1s_3j6vlmtUZFANThQFXA7dNCbk1SuU856oBK5sSlS1k0eS8aoyoMwUWMye5swZqBGEzcGU2J1dTbvrM54hx0Fs_hj6t1EIIKXkuuEwqmFR18DEGdHoX2o90hQauj_j0hE8nfPqIT4vkEZMnJm3_juEv-X_TN3gzcyI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hammami, Marwa</creator><creator>Bechikh, Slim</creator><creator>Hung, Chih-Cheng</creator><creator>Ben Said, Lamjed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><author>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Multiple objective analysis</topic><topic>Population (statistical)</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammami, Marwa</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Ben Said, Lamjed</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammami, Marwa</au><au>Bechikh, Slim</au><au>Hung, Chih-Cheng</au><au>Ben Said, Lamjed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-018-0269-2</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1865-9284
ispartof Memetic computing, 2019-06, Vol.11 (2), p.193-208
issn 1865-9284
1865-9292
language eng
recordid cdi_proquest_journals_2224405204
source SpringerLink Journals
subjects Accuracy
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Classification
Classifiers
Complex Systems
Control
Data mining
Data processing
Datasets
Engineering
Evolutionary algorithms
Genetic algorithms
Mathematical and Computational Engineering
Mechatronics
Multiple objective analysis
Population (statistical)
Regular Research Paper
Robotics
Sorting algorithms
title A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-objective%20hybrid%20filter-wrapper%20evolutionary%20approach%20for%20feature%20selection&rft.jtitle=Memetic%20computing&rft.au=Hammami,%20Marwa&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-018-0269-2&rft_dat=%3Cproquest_cross%3E2224405204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224405204&rft_id=info:pmid/&rfr_iscdi=true