A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection
Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classific...
Gespeichert in:
Veröffentlicht in: | Memetic computing 2019-06, Vol.11 (2), p.193-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 208 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Memetic computing |
container_volume | 11 |
creator | Hammami, Marwa Bechikh, Slim Hung, Chih-Cheng Ben Said, Lamjed |
description | Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms. |
doi_str_mv | 10.1007/s12293-018-0269-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2224405204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2224405204</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EElXpA3CzxNngdZzEOVYVf1IRB-Bs2cmapgpxsZOivj2uguDEXnZlzcx6P0IugV8D5-VNBCGqjHFQjIuiYuKEzEAVOatEJU5_ZyXPySLGLU-ViVJJmJGXJX0au6Fl3m6xHto90s3Bhrahru0GDOwrmN0OA8W978ah9b0JB5qegjf1hjofqEMzjAFpxO6Y4PsLcuZMF3Hx0-fk7e72dfXA1s_3j6vlmtUZFANThQFXA7dNCbk1SuU856oBK5sSlS1k0eS8aoyoMwUWMye5swZqBGEzcGU2J1dTbvrM54hx0Fs_hj6t1EIIKXkuuEwqmFR18DEGdHoX2o90hQauj_j0hE8nfPqIT4vkEZMnJm3_juEv-X_TN3gzcyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2224405204</pqid></control><display><type>article</type><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><source>SpringerLink Journals</source><creator>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</creator><creatorcontrib>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</creatorcontrib><description>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</description><identifier>ISSN: 1865-9284</identifier><identifier>EISSN: 1865-9292</identifier><identifier>DOI: 10.1007/s12293-018-0269-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Applications of Mathematics ; Artificial Intelligence ; Bioinformatics ; Classification ; Classifiers ; Complex Systems ; Control ; Data mining ; Data processing ; Datasets ; Engineering ; Evolutionary algorithms ; Genetic algorithms ; Mathematical and Computational Engineering ; Mechatronics ; Multiple objective analysis ; Population (statistical) ; Regular Research Paper ; Robotics ; Sorting algorithms</subject><ispartof>Memetic computing, 2019-06, Vol.11 (2), p.193-208</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Nature B.V. 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</citedby><cites>FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12293-018-0269-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12293-018-0269-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Hammami, Marwa</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Ben Said, Lamjed</creatorcontrib><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><title>Memetic computing</title><addtitle>Memetic Comp</addtitle><description>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</description><subject>Accuracy</subject><subject>Applications of Mathematics</subject><subject>Artificial Intelligence</subject><subject>Bioinformatics</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Complex Systems</subject><subject>Control</subject><subject>Data mining</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Engineering</subject><subject>Evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical and Computational Engineering</subject><subject>Mechatronics</subject><subject>Multiple objective analysis</subject><subject>Population (statistical)</subject><subject>Regular Research Paper</subject><subject>Robotics</subject><subject>Sorting algorithms</subject><issn>1865-9284</issn><issn>1865-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EElXpA3CzxNngdZzEOVYVf1IRB-Bs2cmapgpxsZOivj2uguDEXnZlzcx6P0IugV8D5-VNBCGqjHFQjIuiYuKEzEAVOatEJU5_ZyXPySLGLU-ViVJJmJGXJX0au6Fl3m6xHto90s3Bhrahru0GDOwrmN0OA8W978ah9b0JB5qegjf1hjofqEMzjAFpxO6Y4PsLcuZMF3Hx0-fk7e72dfXA1s_3j6vlmtUZFANThQFXA7dNCbk1SuU856oBK5sSlS1k0eS8aoyoMwUWMye5swZqBGEzcGU2J1dTbvrM54hx0Fs_hj6t1EIIKXkuuEwqmFR18DEGdHoX2o90hQauj_j0hE8nfPqIT4vkEZMnJm3_juEv-X_TN3gzcyI</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Hammami, Marwa</creator><creator>Bechikh, Slim</creator><creator>Hung, Chih-Cheng</creator><creator>Ben Said, Lamjed</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20190601</creationdate><title>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</title><author>Hammami, Marwa ; Bechikh, Slim ; Hung, Chih-Cheng ; Ben Said, Lamjed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-86a1fc10bd715ba8850508d1b4d7e8b646d509da2c381be3f40fba1ce12b31f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Accuracy</topic><topic>Applications of Mathematics</topic><topic>Artificial Intelligence</topic><topic>Bioinformatics</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Complex Systems</topic><topic>Control</topic><topic>Data mining</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Engineering</topic><topic>Evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical and Computational Engineering</topic><topic>Mechatronics</topic><topic>Multiple objective analysis</topic><topic>Population (statistical)</topic><topic>Regular Research Paper</topic><topic>Robotics</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hammami, Marwa</creatorcontrib><creatorcontrib>Bechikh, Slim</creatorcontrib><creatorcontrib>Hung, Chih-Cheng</creatorcontrib><creatorcontrib>Ben Said, Lamjed</creatorcontrib><collection>CrossRef</collection><jtitle>Memetic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hammami, Marwa</au><au>Bechikh, Slim</au><au>Hung, Chih-Cheng</au><au>Ben Said, Lamjed</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection</atitle><jtitle>Memetic computing</jtitle><stitle>Memetic Comp</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>2</issue><spage>193</spage><epage>208</epage><pages>193-208</pages><issn>1865-9284</issn><eissn>1865-9292</eissn><abstract>Feature selection is an important pre-processing data mining task, which can reduce the data dimensionality and improve not only the classification accuracy but also the classifier efficiency. Filters use statistical characteristics of the data as the evaluation measure rather than using a classification algorithm. On the contrary, the wrapper process is computationally expensive because the evaluation of every feature subset requires running the classifier on the datasets and computing the accuracy from the obtained confusion matrix. In order to solve this problem, we propose a hybrid tri-objective evolutionary algorithm that optimizes two filter objectives, namely the number of features and the mutual information, and one wrapper objective corresponding to the accuracy. Once the population is classified into different non-dominated fronts, only feature subsets belonging to the first (best) one are improved using the indicator-based multi-objective local search. Our proposed hybrid algorithm, named Filter-Wrapper-based Nondominated Sorting Genetic Algorithm-II, is compared against several multi-objective and single-objective feature selection algorithms on eighteen benchmark datasets having different dimensionalities. Experimental results show that our proposed algorithm gives competitive and better results with respect to existing algorithms.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12293-018-0269-2</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1865-9284 |
ispartof | Memetic computing, 2019-06, Vol.11 (2), p.193-208 |
issn | 1865-9284 1865-9292 |
language | eng |
recordid | cdi_proquest_journals_2224405204 |
source | SpringerLink Journals |
subjects | Accuracy Applications of Mathematics Artificial Intelligence Bioinformatics Classification Classifiers Complex Systems Control Data mining Data processing Datasets Engineering Evolutionary algorithms Genetic algorithms Mathematical and Computational Engineering Mechatronics Multiple objective analysis Population (statistical) Regular Research Paper Robotics Sorting algorithms |
title | A Multi-objective hybrid filter-wrapper evolutionary approach for feature selection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T07%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Multi-objective%20hybrid%20filter-wrapper%20evolutionary%20approach%20for%20feature%20selection&rft.jtitle=Memetic%20computing&rft.au=Hammami,%20Marwa&rft.date=2019-06-01&rft.volume=11&rft.issue=2&rft.spage=193&rft.epage=208&rft.pages=193-208&rft.issn=1865-9284&rft.eissn=1865-9292&rft_id=info:doi/10.1007/s12293-018-0269-2&rft_dat=%3Cproquest_cross%3E2224405204%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2224405204&rft_id=info:pmid/&rfr_iscdi=true |